Altera vs. Xilinx
which one keeps your design hidden?

22. Aug. 2013

Amir Moradi
Embedded Security Group
Ruhr University Bochum, Germany
Acknowledgment

- Alessandro Barenghi
- Markus Kasper
- Timo Kasper
- David Oswald
- Pawel Swierczynski
- Christof Paar
SCA on Bitstream Encryption Feature
Broken Families

Virtex-II Pro, SASEBO

Virtex-4, Xilinx DevBoard

Virtex-5, SASEBO-GII
Broken Families

Spartan-6, SASEBO-W

Stratix-II, SASEBO-B
New Targets

Stratix-III, Altera DevKit

Kintex-7, SASEBO-GIII
EM Analysis
EM Analysis
EM Analysis
EM Analysis
Decapping
Altera’s Key Derivation

Key1, Key2 → FPGA

AES Key
Altera’s Key Derivation

AES Key = ENC_{Key1}(Key2)

Selecting an arbitrary Key1’
Key2’ = DEC_{Key1’}(AES Key)
(Key1’, Key2’) works the same as (Key1, Key2)
no added security!
Old vs. New Generations

- **Altera:**
 - AES-128 is replaced by AES-256
 - Key derivation stays the same
 - Counter is not increased arithmetically
 - much heuristics + proprietary schemes
 - revealed by reverse engineering the PC software
Old vs. New Generations

- **Altera:**
 - AES-128 is replaced by AES-256
 - Key derivation stays the same
 - Counter is not increased arithmetically
 - much heuristics + proprietary schemes
 - revealed by reverse engineering the PC software

- **Xilinx:**
 - AES-256 in CBC mode (as before)
 - HMAC is introduced (Virtex-6 and all 7 series)
 - no place in FPGA to save the HMAC key!
 - The first block of the encrypted bitstream is the HMAC key!