
Building Hash Functions from Block
Ciphers, Their Security and
Implementation Properties

Seminararbeit

Timo Bartkewitz
Ruhr-University Bochum

February 23, 2009

Abstract

This work deals with methods to construct a hash function containing
a compression function that is built from a block cipher. There are
many schemes to turn a block cipher into a compression function, here
the most known are presented including Merkle-Damg̊ard Construction.
Such schemes can produce either single-length-block or double-length-
block hash functions according to the underlying block cipher with certain
properties. At the end security considerations are outlined to convey what
signifies a secure hash function that is built from a block cipher.

Chair for Embedded Security
Prof. Dr.-Ing. Christof Paar

Contents

1 Introduction 1

2 Hash Functions 2
2.1 Principle . 2
2.2 Requirements and Properties . 3
2.3 Message-Digest Algorithm 5 (MD5) 4

3 Hash Function Constructions from Block Ciphers 4
3.1 Merkle-Damg̊ard Construction 4
3.2 Rate . 6
3.3 Single-Block-Length Compression Functions 6

3.3.1 Davies-Meyer . 6
3.3.2 Matyas-Meyer-Oseas . 7
3.3.3 Miyaguchi-Preneel . 8

3.4 Double-Block-Length Compression Functions 9
3.4.1 MDC-2 . 9
3.4.2 MDC-4 . 11
3.4.3 Hirose . 12

3.5 Construction in Detail: Message-Digest Algorithm 5 13

4 Security Consideration 14
4.1 Birthday Paradox and Attack . 14
4.2 Merkle-Damg̊ard - Structural Weaknesses 14
4.3 Attacks Based on Underlying Block Cipher 15
4.4 Black-Box Analysis . 16

5 Conclusion 17

Acronyms 18

List of Figures 19

References 20

II

1 Introduction

Nowadays hash functions gained a high level of importance in data traffic. There
are several ways to deploy these functions. For downloads from the Internet they
could serve as checksums to check the downloaded files for errors. In databases
they are used to speed up table lookups, place down new items or to detect du-
plicated items. But in the first place and in our understanding hash functions
are intended for ensuring integrity in cryptographic applications like authen-
tication processes or distributed hashes (hash trees) which are widely used to
protect file fragments and unions of those from being modified.

The purpose of a cryptographic hash function (and other hash functions) is
easy to understand. It takes a string of arbitrary length as input and maps it to
a fixed-length output string. Therefore the output string should be suggested
as a digest of the input string. That also implies an essential property, an alter-
ation of at least one character of the input causes a completely different output,
thus every output should be unique for every input. For instance somebody
obtains a very long text from somebody else and wants to determine whether
a third person has altered it unauthorized, if a hash function is used one just
have to compare to short strings.
At first sight the necessary functions for the above-mentioned applications seem
to be equal, but they are not. We need different hash functions with special
properties to meet the demands of each application.

At the moment there are intensive researches on new algorithms. In 2007 the
NIST (National Institute of Standards and Technology) announced a challenge1

to establish a candidate as new standard in cryptographic hash functions. But
first of all we have to face one question, why do we need further hash functions?
Today there exist many well-known algorithms like the MD and SHA Family,
whereas MD5 and SHA-1 are the most used algorithms. Other mentionable
functions are RIPEMD and Whirlpool. However, the past has shown that some
of them, mainly MD5 (also MD2 and MD4) and SHA-1 (also SHA-0), hold weak
spots such one is able to find two different inputs with the same output.

In this work we will concentrate on cryptographic hash functions and how they
are built from cryptographic primitives, especially from block ciphers. Building
hash functions in such a way is a typical approach due to fact that underlying
block ciphers are well reviewed over years. Secondly there are many approved
construction methods to use block ciphers in an efficient and simple way.
Primarily we will deal with Merkle-Damg̊ard construction, which embeds an
inner function. It formally describes how input string and block cipher are
brought together at an abstract level. The inner function is based on one of the
methods of Davies-Meyer, Matyas-Meyer-Oseas, Miyaguchi-Preneel or MDC-2
and MDC-4. It points out the relation between the input respectively the out-

1Cryptographic Hash Algorithm Competition, http://www.nist.gov/hash-competition

1

put of the used block cipher and the block cipher itself.
One challenge in the future will be the security level and finding a design method
to derive compact hash functions from a block cipher. Currently there exist
many methods, including the above-mentioned, which result in a 2n-bit to n-bit
function taking a n-bit block cipher (n-bit key, n-bit input and n-bit output).
Utilizing these methods hash functions are resistant against preimage and sec-
ond preimage attacks with 2n operations and against finding collisions with 2

n
2

operations. A newer work by Hirose showed that double-block-length construc-
tions allow security proofs in the ideal cipher model.

2 Hash Functions

This section gives a brief outline about the functional principle, usage and ex-
amples of hash functions. In cryptographic understanding the properties of an
underlying hash function design are greatly important since they provide infor-
mation whether the hash function is useful in a certain application. In this work
our focus lies on cryptographic hash functions, hence we exemplary introduce
one of the most common hash functions (e.g. in signatures, certificates etc.) by
now.

2.1 Principle

As mentioned in section 1 the functional principle is easy to understand. The
hash function takes a string of arbitrary length and maps it to a fixed-length
output referred to as hash-value (image). More precisely, for a domain D and
range S a hash function satisfies the mapping

h : D → S, whereas |D| > |S| .

Figure 1 illustrates that approach with the hash function as black-box. This

Hash

Function

h(x)

Hash-Value sInput String x

Figure 1: Hash Function Principle

implies input strings that are shorter than expected output string length are
stretched and larger strings narrowed to n bits (compression), thus

h : x(∗) → s(n).

Due to the restriction by value n domain D can be considered being much
greater than range S. As a result it is possible that two certain input strings
deliver the same output string (collision) but with negligible probability, if n is

2

big enough.

Such a function can be used to ensure integrity of informations. Once the
hash-value of an information is determined by a certain hash function the in-
formation can be confirmed as not being altered by applying the hash function
again.

2.2 Requirements and Properties

A proper hash function should meet the following requirements and properties
[1]:

• Compression. Hash function h(x) produces a fixed-length output string
s with bit-length n for any given input string k of any arbitrary finite
length.

• Ease of computation. Every hash-value (output string s) of hash func-
tion h(x) is efficient to compute in software and hardware.

• Preimage resistance. It is computationally infeasible to find an input
string x′ (preimage) such that h(x′) = s for any given output string s for
which corresponding input string x is unknown.

• Second preimage resistance. It is computationally infeasible to find
an input string x′ (second preimage) for any given input string x such that
h(x′) = h(x).

• Collision resistance. It is computationally infeasible to find two distinct
input strings x and x′ such that h(x′) = h(x).

• Non-correlation. Input string x and output string s are not correlated
in any way. Every bit of input string x affects every bit of output string
s.

• Near-collision resistance. It is computationally infeasible to find two
input strings x and x′ such that h(x) and h(x′) hardly differ.

• Partial-preimage resistance. It is computationally infeasible to find
any substring of input string x for any given output string s even for any
given distinct substring of input string x.

Here, computationally infeasible means solving the underlying problem is not
possible within polynomial time or constrained memory. This should outline
the practical meaning of some properties.

3

2.3 Message-Digest Algorithm 5 (MD5)

The cryptographic hash function MD5 [2] was presented by R. Rivest in 1992.
It is widely spread and used in signatures and certificates but it is mainly noted
for its deployment in checksums to ensure data integrity. The algorithm is the
successor of MD4 that has been proved to be insecure [3]. MD5 produces hash-
values with a length of 128 bit.
The algorithm is shown in detail in section 3.5 to illustrate the construction of
a hash function with given popular methods.
But we definitely not intend to proclaim MD5 as a secure hash function. Quite
the opposite latest practical attacks2 reveal security lacks such it is possible to
create rogue Certification Authority certificate which are accepted as valid and
trusted by all common web browsers. This approach is possible due to new
methods for computing MD5 collisions. A scientific paper containing details is
not yet released.

3 Hash Function Constructions from Block Ci-
phers

Due to the exemplary introduction of MD5 in section 3.5 one would agree that
the complexity of latest hash functions is indeed manageable in contrast to other
modern cryptographic applications. In the process of designing new hash func-
tions it is desirable to reuse cryptographic components that are already reviewed
and established but efficient to implement in hardware and software. Block ci-
phers could take this place since they provide some appropriate properties.
As hash functions must be able to handle inputs of arbitrary length a method
is required to transform these inputs in order to use them with block ciphers
whose fixed-length input is much smaller. This approach is represented by the
Merkle-Damg̊ard construction.
Additionally, a method is required to embed the block cipher within the Merkle-
Damg̊ard construction. However, a straight usage of a block cipher leads to the
problem that the input can be recovered easily with aid of the decryption func-
tion of the block cipher. Methods to avoid this problem are described afterwards.

Note. Until now it is an open question what requirements of a block cipher
are sufficient to construct secure hash functions. A secure block cipher that
is provable secure with certain assumptions does not guarantee a secure hash
function.

3.1 Merkle-Damg̊ard Construction

The construction was described by R. Merkle in his Ph.D. thesis [4] in 1979. It
represents a guidance to build hash functions from compression functions. A
block cipher can be considered as a compression function since it transforms two

2MD5 considered harmful today, http://www.win.tue.nl/hashclash/rogue-ca

4

inputs (plain text and key) to an output (cipher text) whose length is smaller
than the entire length of the two inputs.
I. Damg̊ard proved the most important property of the construction [5].

Fact 1. Any compression function f which is collision resistant can be ex-
tended to a collision resistant hash function h(x).

Therefore, the problem finding a proper hash function is reduced to finding
an appropriate compression function.
Figure 2 illustrates the approach of the construction. The input string x is

x

divide x into t blocks

append padding bits

append length block

E

g

xi

Hi-1

Hi

Ht+1

x1x2...xtxt+1

h(x)

f

Figure 2: Merkle-Damg̊ard Construction

divided into t equal-sized fixed-length blocks xi with bit-length r. Bit-length r
corresponds to input length of desired compression function f .
To obtain an overall bit-length of x which is a multiple of block length r a
padding must be appended. The padding consists of a single 1-bit and as few
0-bits as necessary to reach bit-length r. The single 1-bit and consequently r−1
0-bits are appended even if bit-length of x is already a multiple of r, thus an
additional block is created. Otherwise, without including the single 1-bit trail-
ing 0-bits from x cannot be distinguished from a padding containing 0-bits only,
hence this will result in the same hash-value.
Due to the proof of Fact 1 two distinct inputs must not have the same tail

5

end, hence a length block xt+1 with bit-length r is appended holding the right-
justified binary representation of overall bit-length of x. This is called the
Merkle-Damg̊ard strengthening.
The blocks xi serves as input to the compression function f that produces an
intermediate result Hi after each iteration. Hi serves as feedback value to f
and is processed with xi+1 in next iteration. This implies the need of an initial
value (IV) H0 for the first iteration that is often provided pre-defined with bit-
length r. Choosing a proper function f is considered in section 3.3 and 3.4. As
mentioned above f is not the block cipher itself but applies it.
Function g transforms the preliminary result Ht+1 of bit-length r to the final
hash-value with desired bit-length. Function g is often the identity mapping.

3.2 Rate

The rate of an iterated hash function outlines the ratio between the number
of block cipher operations and the output. More precisely, if n denotes the
output bit-length of the block cipher the rate represents the ratio between the
number of processed bits of input x, n output bits and the necessary block cipher
operations to produce these n output bits. Generally, the usage of less block
cipher operations could result in a better overall performance of the entire hash
function but it also leads to a smaller hash-value which is often undesirable.
The rate is expressed in the formula

Rh =
|xi|
s · n

,

whereas |xi| denotes the bit-length of input block xi, s the number of block
cipher operations and n the block-length.

3.3 Single-Block-Length Compression Functions

Single-length hash functions output approximately the same number of bits as
processed by the underlying block cipher. Considering security concerns the
following approaches should be applied if the block cipher already provides a
satisfying amount of output bits.

Notation. Ek denotes a generic n-bit block cipher parameterized by a symmet-
ric key k. E can either state the encryption or decryption function of the block
cipher. H0 represents the constant pre-specified initial value IV as mentioned
above.

3.3.1 Davies-Meyer

The Davies-Meyer compression function makes a simple use of the underlying
block cipher E (Fig. 3). The input blocks xi serve as the key to E. Thus, the
block size of xi must match the excepted key size of the specific block cipher.

6

Exi

Hi-1

Hi

Figure 3: Davies-Meyer Scheme

The previous hash-value Hi serves as the plaintext to be handled with appro-
priate bit-length.
The output Hi is then concatenated with the previous output Hi−1 with aid of
the exclusive-or operator.

The final output Ht is defined by the iterated formula

Hi = Exi
(Hi−1)⊕Hi−1

for 1 ≤ i ≤ t, H0 = IV .

The rate of a hash function using Davies-Meyer compression function is

RDM =
k

1 · n
=

k

n

since the input x serves as the key with bit-length k that could be different from
bit-length n of input or output, respectively.

3.3.2 Matyas-Meyer-Oseas

The Matyas-Meyer-Oseas compression function is most widely identical to Davies-
Meyer with the input x and the previous hash-value Hi interchanged (Fig. 4).
Here, the input blocks xi serve as plaintext to be handled and the previous
hash-value Hi serve as the key to block cipher E. Due to the possible different
bit-lengths k and n a function g precedes the key input of E. It maps the n-bit
previous hash-value to a suitable k-bit key.

The final output Ht is defined by the iterated formula

Hi = Eg(Hi−1)(xi)⊕ xi

7

E

xi

Hi-1

Hi

g

Figure 4: Matyas-Meyer-Oseas Scheme

for 1 ≤ i ≤ t, H0 = IV .

The rate of a hash function using Matyas-Meyer-Oseas compression function
is

RMMO =
n

1 · n
= 1.

In contrast to Davies-Meyer this compression function takes an input bit-length
equal to the output bit-length.

3.3.3 Miyaguchi-Preneel

The Miyaguchi-Preneel compression can be considered as an extension of Matyas-
Meyer-Oseas. This scheme (Fig. 5) additionally involves the previous hash-value

E

xi

Hi-1

Hi

g

Figure 5: Miyaguchi-Preneel Scheme

Hi in the exclusive-or operator to compute the hash-value Hi.

8

The final output Ht is defined by the iterated formula

Hi = Eg(Hi−1)(xi)⊕ xi ⊕Hi−1

for 1 ≤ i ≤ t, H0 = IV .

The rate of a hash function using Miyaguchi-Preneel compression function is
also

RMP =
n

1 · n
= 1

since there are no changes made to the ratio between input and output bit-
length.

3.4 Double-Block-Length Compression Functions

Double-length hash functions output approximately twice the number of bits
as processed by the underlying block cipher. Considering security concerns the
following approaches should be applied if the block cipher provides an unsatis-
fying amount of output bits.

Fact 2. If either h1 or h2 is a collision resistant hash function, then h(x) =
h1(x) ||h2(x) is a collision resistant hash function.

Note. If h1 and h2 are applied independently then one could hope finding
a collision for h(x) requires twice the effort to find a collision for one of them, if
both are collision resistant [1]. Consequently, this stresses the main motivation
for double-length constructions.

3.4.1 MDC-2

The MDC-2 (Manipulation Detection Code) algorithm employs two separated
iterations of Matyas-Meyer-Oseas scheme. Therefore, this hash function scheme
(Fig. 6) outputs a double-block length hash-value relative to the underlying
block cipher. It was originally intended for use with DES but is applicable to
any desired block cipher that fits this construction. For that reason the func-
tions g and g̃ are meant to produce DES suitable keys. They slightly differ from
each other to prevent outputting weak or semi-weak DES keys. The mapping
of these functions is as follows.

For input U = u1u2u3 . . . u64 every eighth bit is deleted starting with u8. Then
the second and third bit is either replaced by 10 for g or 01 for g̃

g(U) = u110u4u5u6u7u9 . . . u63,

g̃(U) = u101u4u5u6u7u9 . . . u63.

9

Eg E g

A B C D

A D C B

Hi Hi

xi

Hi-1 Hi-1~~

~

Figure 6: MDC-2 Scheme

However, these functions must be customized to use other block ciphers than
DES since they probably require a different bit-length. The initial values feed-
ing the functions g and g̃ are already defined for MDC-2. The IV value in
hexadecimal representation is 0x5252525252525252. The counterpart ĨV is the
4-bit shifted IV value 0x2525252525252525. These values may also require to
be customized to serve the desired block cipher.
After each Matyas-Meyer-Oseas iteration the right halves of the two outputs are
interchanged. They both Hi and H̃i form the preliminary output.

The final output Ht || H̃t is defined by the iterated formula

Hi = CL
i || C̃R

i ; Ci = Eg(Hi−1)(xi)⊕ xi

H̃i = C̃L
i ||CR

i ; C̃i = Eg̃(H̃i−1)
(xi)⊕ xi

for 1 ≤ i ≤ t, H0 = IV and H̃0 = ĨV .

The rate of a hash function using MDC-2 compression function is

RMDC2 =
n

2 · n
=

1
2

since it needs two block cipher operations for one output regardless of the double-
length hash-value.

10

3.4.2 MDC-4

The MDC-4 compression function (Fig. 7) can be considered as an extension
of MDC-2. It employs four separated iterations of Matyas-Meyer-Oseas scheme

MDC-2

Gi Gi

xi

Gi-1 Gi-1~

~

MDC-2

Hi Hi~

Figure 7: MDC-4 Scheme

respectively two iterations of MDC-2. The two MDC-2 schemes in MDC-4 are
connected in a similar way like the two Matyas-Meyer-Oseas schemes in MDC-2.
Thereby, the functions g, g̃ and the initial values IV , ĨV within MDC-2 remain
unchanged.
The upper MDC-2 compression is exactly the same as mentioned in section
above but with Gi−1 and g̃i−1 as feedback values. The resulting preliminary
outputs Hi and H̃i are put through to the lower MDC-2 compression. Instead
of x this time the preliminary output Gi−1 and G̃i−1 of the overall scheme serve
as input.

The final output Gt || G̃t is defined by the iterated formula

Hi = CL
i || C̃R

i ; Ci = Eg(Gi−1)(xi) ⊕ xi

H̃i = C̃L
i ||CR

i ; C̃i = Eg̃(G̃i−1)
(xi)⊕ xi

for 1 ≤ i ≤ t, H0 = IV and H̃0 = ĨV and

Gi = DL
i || D̃R

i ; Di = Eg(G̃i−1)(xi)
⊕ G̃i−1

G̃i = D̃L
i ||DR

i ; D̃i = Eg̃(Gi−1)(xi) ⊕Gi−1

11

for 1 ≤ i ≤ t, G0 = IV and G̃0 = ĨV .

The rate of a hash function using MDC-4 compression function is

RMDC4 =
n

4 · n
=

1
4

since it needs four block cipher operations for one output regardless of the
double-length hash-value.

3.4.3 Hirose

The Hirose compression function consists of a (n, n + |xi|) block cipher plus a
permutation p. Figure 8 illustrates this scheme. The bock cipher is instantiated

E E||

Hi-1 xi Gi-1c

Hi Gi

Figure 8: Hirose Scheme

twice with two feedback values Hi−1, Gi−1 and xi serving as input. The fixed-
point free permutation p precedes one of the block cipher instances which most
widely follow the Davies-Meyer scheme but with the difference that the key
input is a concatenation of feedback value Hi−1 and input xi. Permutation p is
specified as

p(Gi−1,Hi−1, xi) = (Gi−1 ⊕ c,Hi−1, xi),

whereas c denotes a non-zero constant of bit-length n.

The final output Ht ||Gt is defined by the iterated formula

Hi = EHi−1||xi
(p(Gi−1,Hi−1, xi))⊕Hi−1

Gi = EHi−1||xi
(Gi−1)⊕Gi−1 ⊕ c

12

for 1 ≤ i ≤ t, H0 = IV and G0 = ĨV .

The rate of a hash function using Hirose compression function is

RH =
k − n

2 · n

since the input xi concatenated with feedback Hi−1 serves as the key of bit-
length k = n + |xi|, thus |xi| = k − n.

3.5 Construction in Detail: Message-Digest Algorithm 5

The MD5 algorithm exactly follows the approach of Merkle-Damg̊ard Construc-
tion (Fig. 2). The input x is divided into t 512-bit bocks. The appending of
the padding and the length block is combined in one step. First a single 1-bit is
appended and as few 0-bits as necessary resulting in a overall bit-length 64 less
than a multiple of 512. These last 64 bits are represented by the right-justified
64 bits of the initial overall bit-length of input x.
The MD5 compression function does not exactly follow one of those note above
but utilizes a varied version of Davies-Meyer scheme. Hereby, the exclusive-or
operation involving the previous preliminary output Hi is replaced by an addi-
tion modulo 232 (preliminary output is divided into 4 32-bit words).
The block cipher is a dedicated cipher solely designed for use within MD5. It
divides the 512 bit block xi into 16 32-bit words. In four rounds each contain-
ing 16 iterations the preliminary output Hi is updated in the following manner
schematically shown in Figure 9. The preliminary output is divided into 4 32-

(Hi-1)1 (Hi-1)2 (Hi-1)3 (Hi-1)4

<<

F

(Hi)1 (Hi)2 (Hi)3 (Hi)4

(xi)z(j)

y(j)

s(j)

Figure 9: MD5 Block Cipher

bit word. The function F denotes one of four round functions that takes the

13

second, third and fourth word of Hi. The result is then added to Hi modulo
232. The lookup table z determines which word of input block xi is added in the
next step. The lookup table y consists of constant 32-bit words derived from
the sine function. One of those constants is added prior a leftshift is applied
determined by the lookup table s. Finally, the second word of Hi is added and
the words are right shifted by one. Further details are describe in [2].

4 Security Consideration

As mentioned before secure block ciphers does not guarantee secure hash func-
tions since even a good block cipher exhibit unobserved weaknesses that could
make the hash function insecure.
However, in the matter of hash functions secure signifies that there is no algo-
rithm that perform better on finding collisions than a birthday attack. Hence,
a proof of security solely states that the birthday attack is the most efficient
attack on the examined hash function.

4.1 Birthday Paradox and Attack

The birthday paradox originally deals with probability that two distinct persons
from a group of persons share their birthday. Against all expectations the small
number of 23 persons is needed to obtain a probability greater than 50 percent
that at least two persons share their birthday.
In the sense of hash functions this fact can be interpreted as the probability that
two distinct inputs of a certain hash function share the same hash-value. A hash
function whose range is constrained by n holds 2n distinct hash-values. With
birthday paradox in mind a collision can be found after 1.1774 ·

√
2n = 2

n
2 −0.23

trials with probability 1
2 . Since this statement is applicable to any hash function

it dictates a lower bound on collision resistance.
One of the first attacks based on the birthday paradox is accordingly called the
birthday attack by G. Yuval [7].

4.2 Merkle-Damg̊ard - Structural Weaknesses

The Merkle-Damg̊ard construction suffers from structural weaknesses.

• Given a hash-value h(x) of an unknown input x it is possible to produce
a hash-value h(x ||x′) of the original input concatenated with any desired
extension x′. The extension x′ can be considered as additional blocks
xt+1xt+2 . . . of original input x. The hash-value h(x ||x′) can be produced
with feeding the underlying compression function with h(x) and the blocks
of x′.

• Following the approach above it is easy to find any number of collisions
once a single collision is found. This succeeds since any extension attached
to each of the colliding inputs will result in the same hash-value.

14

• Moreover, A. Joux has shown a multicollision attack in [8] finding 2r

collisions. The attack has complexity slightly increased by factor r as
necessary for a birthday attack.

To avoid these weaknesses S. Lucks proposes in [9] a modified structure called
the wide-pipe hash. It has a larger internal state and two compression functions.
The first compression

C ′ : {0, 1}w × {0, 1}m → {0, 1}w

is iteratively used in the same manner as in Merkle-Damg̊ard construction but
with bit-length w greater than hash-value bit-length n. The second compression

C ′′ : {0, 1}w → {0, 1}n

produces the final output.
However, this is not a new idea. SHA-384, for instance, uses internal 512-bit
states but output a 384-bit hash-value. The SHA-384 is derived from SHA-512.

4.3 Attacks Based on Underlying Block Cipher

Block ciphers may have certain properties with no practical concern when the
block cipher is used for encryption but allow manipulation of compression func-
tion inputs or prediction and greater control of relations between outputs within
the hash function. Properties facilitating such concerns are

• Complementation property. Ek(x) = Ek(x), whereas x denotes bit-
wise complement. This facilitates finding collisions trivially. A slightly
modified Matyas-Meyer-Oseas compression function EHi−1⊕xi

(xi) ⊕ xi,
for instance, produces the same output for x and x.

• Weak keys. Ek(Ek(x)) = x, for any x. For example, a simplified Davies-
Meyer compression function Exi

(Hi−1) allows creating a two-step fixed
point since inserting two blocks xi containing a weak key leads to the
relation Hi = Hi−2.

• Semi-weak keys. Ek′(Ek(x)) = x, for any x. Here, the concern is similar
to that of weak keys.

• Fixed points. Ek(x) = x, for certain k. For example, the Davies-Meyer
compression function Exi

(Hi−1) ⊕Hi−1 produces the output 0n, if Hi−1

is a fixed point.

• Key collisions. Ek(x) = Ek′(x), for certain x. Obviously, this results in
hash function collisions.

15

4.4 Black-Box Analysis

The black-box analysis applies the ideal cipher model where an encryption func-
tion E : {0, 1}n × {0, 1}k → {0, 1}n is assumed to be randomly selected from
a set Bn,k containing all such block ciphers. The encryption, respectively, the
decryption is simulated by two oracles.
The encryption oracle e receives a pair of a key and a plaintext and, if the
plaintext is received for the first time, returns a randomly selected ciphertext.
Whereas the decryption oracle e−1 receives a pair of a key and a ciphertext
and, if the ciphertext is received for the first time, returns a randomly selected
plaintext.
They both share a table for these triplets, a pair of the query and corresponding
reply, and return the record if a query is received for the second time.

Collision resistance of Hirose scheme. Assuming the ideal cipher model it
can be shown that any collision-finding attack on a hash function using Hirose
compression function is at most as efficient as the birthday attack.
Two queries are required to compute the output of the compression function
but a query to either of them determines to the other due to the permutation
p. Thus, they are considered to be a single query.
FindColHF(A,H) is an experiment to measure the collision resistance. A de-
notes a collision-finding algorithm.

FindColHF(A,H)
E ←R Bn,n+|xi|;

(c, c′)←R Ae,e−1
;

if c 6= c′ ∧ hH(c) = hH(c′) return 1; else 0;

First the block cipher is randomly chosen. A then makes two randomly chosen
queries which results in two replies c and c′ by the oracles. FindColHF verifies
whether a collision has occurred or not.

Advcoll
H (q) denotes the probability that FindColHF(A,H) returns 1 where A

makes q pairs of queries in total presumed that every pair is made once.
The following theorem depicts the collision resistance.

Theorem 1. For every query 1 ≤ q ≤ 2n−2

Advcoll
H (q) ≤ 3(

q

2n− 1
)2.

The proof can be found in [6].

Advcoll
H (q) = 1

2 gives
q ≥ 2n−2.3.

Collision resistance of single-block-length schemes. In [10] Black, Rog-
away and Shrimpton provide upper and lower bounds on collision resistance, in

16

the above depicted black-box analysis, of the 64 most basic ways (single-block-
length) to construct a hash function considered by B. Preneel, R. Govaerts and
J. Vandewalle in [11]. The single-block-length schemes presented in section 3.2
are also considered.

5 Conclusion

The methods to construct hash functions from block ciphers presented in this
work are well studied and represent a proper way to develop new hash algo-
rithms. However, in the real world most of common hash functions are partially
built from scratch (e.g. MD5, SHA-1) which means following a dedicated design.
As illustrated in section 3.5 these hash functions indeed use the Merkle-Damg̊ard
construction as a structural frame but virtually none of them contains a com-
pression function based on a well-known block cipher. Whirlpool3 for example
uses the Merkle-Damg̊ard construction combined with the Miyaguchi-Preneel
compression function scheme but uses its own dedicated block cipher.
Utilizing the Merkle-Damg̊ard construction is advantageous since it reduces the
problem of finding a secure hash function to finding a secure compression func-
tion where secure means any collision-finding attack is at most as efficient as
the birthday attack. Section 4 outlined that some compression functions satisfy
this meaning of being secure with certain assumptions but it is still an open
question whether a secure block cipher leads to a secure hash function or not.
There still could be unknown weaknesses in a block cipher that makes the hash
function vulnerable to collision-finding attacks. Moreover, in the matter of per-
formance block ciphers are handicapped related to dedicated block ciphers since
dedicated algorithms are less complex (MD5, section 3.5).
In embedded environments it is important to save resources (program memory,
computing power), hence it is useful to reuse already implemented block ciphers
for the hash function.

3Whirlpool, http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

17

Acronyms

IV Inital Value

DES Data Encryption Standard

MD Message-Digest algorithm

MDC Manipulation Detection Code

NIST National Institute of Standards and Technology

RIPEMD Race Integrity Primitives Evaluation Message-Digest

SHA Secure Hash Algorithm

18

List of Figures

1 Hash Function Principle . 2
2 Merkle-Damg̊ard Construction 5
3 Davies-Meyer Scheme . 7
4 Matyas-Meyer-Oseas Scheme . 8
5 Miyaguchi-Preneel Scheme . 8
6 MDC-2 Scheme . 10
7 MDC-4 Scheme . 11
8 Hirose Scheme . 12
9 MD5 Block Cipher . 13

19

References

[1] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied
Cryptography, Chapter 9, CRC Press, 1997.

[2] R. Rivest, RFC 1321: The MD5 Message-Digest Algorithm, 1992.

[3] Y. Naito, Y. Sasaki, N. Kunihiro and K. Ohta, Improved Collision
Attack on MD4, In: LNCS, vol. 3935, pp. 129-145, Springer, Heidelberg
2006.

[4] R. Merkle, Secrecy, authentication, and public key systems, UMI Research
Press, 1982.

[5] I. Damg̊ard, A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989, LNCS, vol. 435, pp. 416-427, Springer, Heidelberg 1989.

[6] S. Hirose, Some Plausible Constructions of Double-Block-Length Hash
Functions. In: Robshaw, M.J.B. (ed.) FSE 2006, LNCS, vol. 4047, pp. 210-
225, Springer, Heidelberg 2006.

[7] G. Yuval, How to Swindle Rabin, In: Cryptologia, vol. 3, pp. 187-191,
1979.

[8] A. Joux, Multicollisions in Iterated Hash Functions. Application to Cas-
caded Constructions. In: Franklin, M. (ed.) CRYPTO 2004, LNCS, vol.
3152, pp. 306-316, Springer, Heidelberg 2004.

[9] S. Lucks, Design Principles for Iterated Hash Functions, In: Cryptology
ePrint Archive, Report 2004/253, 2004.

[10] J. Black, P. Rogaway and T. Shrimpton, Black-Box Analysis of the
Block-Cipher Based Hash-Function Constructions from PGV. In: Yung, M.
(ed.) CRYPTO 2002, LNCS, vol. 2442, pp. 320-335, Springer, Heidelberg
2002.

[11] B. Preneel, R. Govaerts and J. Vandewalle, Hash Functions Based
on Block Ciphers: A Synthetic Approach, In: CRYPTO 1993, LNCS, vol.
773, pp. 368-378, Springer, London 1994.

20

