
Merkle Signature Schemes, Merkle
Trees and Their Cryptanalysis

Georg Becker

18.07.08

Seminararbeit

Ruhr-Universität Bochum

Chair for Embedded Security

Prof. Dr.-Ing. Christof Paar

Contents

1 Introduction 1

2 One-Time Signatures 2
2.1 Secure hash functions . 2
2.2 Lamport One-Time Signature Scheme 3

2.2.1 Key generation . 3
2.2.2 Signing a message . 3
2.2.3 Signature verification . 3

2.3 Winternitz One-time Signature Scheme 4
2.3.1 Key generation . 4
2.3.2 Signature generation . 5
2.3.3 Signature verification . 6
2.3.4 Choosing parameter w . 6

3 Merkle-Signature Scheme 8
3.1 Key generation . 8
3.2 Signature generation . 9
3.3 Signature verification . 9
3.4 Cost analysis . 10

4 The Merkle tree traversal problem 12
4.1 The treehash algorithm . 12
4.2 The classic traversal . 13
4.3 Merkle tree traversal in log space and time 16
4.4 Fractal tree representation and traversal 18

5 Improvements to Merkle-Signature Scheme 20

6 Cryptanalysis 22
6.1 Case 1: H(Y ′

i) = H(Yi) . 22
6.2 Case 2: H(Y ′

i) 6= H(Yi) . 22
6.3 Differential Side Channel resistant 23

7 Conclusion 24

1 Introduction

In todays world, digital signatures are an indispensable element for secured com-
munication applications. They are needed, to ensure the authentication of a
communication partner, i.e. in web services like Email or chats. They are also
needed, to ensure the authentication of a web server for web services like web-
shops or online-banking. But digital signatures are not just used in web services.
For example, they can also be used to verify the validity of digital passports or
other digital documents.

Popular signature schemes are the Digital Signature Scheme (DSA) and the
RSA Signature Scheme. The security of these schemes rely on the difficulties
of solving the discrete logarithm problem and the problem of factorizing large
numbers. Today, no efficient algorithms are known to solve these problems, so
that theses schemes are considered secure. However, it is not proven that no such
algorithms exist. If the mathematicians are able to find a suitable algorithm,
these signature schemes would become insecure. Furthermore, there are already
algorithms known to solve these problems in case a quantum computer can be
build. Some scientists believe it might be possible to build a quantum computer
in about 20 years. Therefore, alternative digital signature schemes are needed,
in case the signature schemes based on the discrete logarithm problem or the
factorization problem become insecure.

The Merkle Signature Scheme provides such an alternative signature scheme.
As we will see in chapter 6, the security of the Merkle Signature Scheme only
depends on a secure hash function and a secure one-time signature. The charac-
teristics of secure hash functions are described in section 2.1 and two examples
of secure one-time signature schemes are given in section 2.2 and 2.3. In chapter
3 the Merkle Signature Scheme will be introduced. In chapter 4, methods for
solving the Merkle Tree Traversal Problem are described. Efficient methods to
solve this problem are needed to make the signature scheme feasible. In chapter
5 further improvements to the original Merkle Signature Scheme are introduced,
which make the signature scheme more efficient.

2 One-Time Signatures

2.1 Secure hash functions

The security of One-Time Signatures is based on cryptographic secure hash func-
tions. In this section we will define the properties of a cryptographic secure hash
function. A hash function H : {0, 1}∗ → {0, 1}s is cryptographic secure, if it is
”preimage resistant”, ”second preimage resistant” and ”collision resistant”.

• Preimage resistant:

A hash function H is preimage resistant, if it is hard to find any m for a
given h with h = H(m).

• Second preimage resistance:

A hash function H is second preimage resistant if it is hard to find for a
given m1 any m2 with H(m1) = H(m2).

• Collision resistant:

A hash function H is collision resistant if it is hard to find a pair of m1 and
m2 with H(m1) = H(m2).

For a good cryptographic secure hash function no algorithm should be known,
which solves the preimage resistance and second preimage resistance problem
more efficient, than a brute force attack. In a brute force attack against preimage
resistance, the attacker chooses m randomly until h = H(m). H(m) can have
2s different results. Each result h should appear with the same probability Ph

with Ph = 1/(2s). Therefore, an attacker would have to choose on average 2s/2
different inputs m, until he finds an m with h = H(m). With the same idea, we
find out that the attacker would need on average 2s/2) different inputs m2, until
he finds an m2 with H(m1) = H(m2). So the complexity of an attack against
preimage and second preimage resistance is 1/2 ∗ 2s = O(2s), with s being the
length of the result of the hash function in bits.

Unfortunately, breaking collision resistance by finding a pair of m1 and m2

with H(m1) = H(m2) is easier than breaking preimage resistance. This is due to
the birthday problem (also referred to as birthday paradox).

Birthday problem: [AMV96] An urn has m balls numbered 1 to m. Suppose
that one ball at a time is drawn from the urn with replacement. On average
about

√

πm
2

balls must be drawn until one ball is drawn twice.

2.2 Lamport One-Time Signature Scheme 3

So referred to the complexity to find a pair m1, m2 with H(m1) = H(m2)

this means that in average
√

π2s

2
≈ O(

√
2s) hash operations must be performed.

To achieve a collision resistance with a security of at least O(280) the size of the
hash function H : {0, 1}∗ → {0, 1}s must be at least 160 bits because O(

√
2160) =

O(280).

2.2 Lamport One-Time Signature Scheme

The Lamport One-Time Signature Scheme (LOTSS) is a signature scheme in
which the public key can only be used to sign a single message. The security of the
LOTSS is based on cryptographic hash functions. Any secure hash function can
be used, which makes this signature scheme very adjustable. If a hash function
becomes insecure it can easily be exchanged by another secure hash function. In
the following first the key generation, then the signing algorithm and finally the
verification algorithm are described.

2.2.1 Key generation

Let H : {0, 1}∗− > H : {0, 1}s be a cryptographic hash function. To sign a
message M = (0, 1)k choose 2 ∗ k random numbers Xij with 1 ≤ i ≤ k and
j = {0, 1}. For each i and j compute Yij = H(Xij). These 2 ∗ k values Yij are
the public key, while the Xij values are the private key.

2.2.2 Signing a message

Given is a message M = m1,m2, ...,mk with mi ∈ {0, 1} and the private keys Xij

with 1 ≤ i ≤ k and j = {0, 1}. For each i it is checked whether mi equals 0 or
1. If it equals 0 then sigi = Xi0 otherwise sigi = Xi1. The signature sig is the
concatenation of all sigi for i = {1, ..., k}. So sig = (sig1||sig2||...||sigk) with ||
denotes the concatenation of two values.

2.2.3 Signature verification

Let sig = (sig1||sig2||...||sigk) be the signature of a given message M = m1,m2, ...,mk

with mi ∈ {0, 1} and Yij the corresponding public key of the Lamport One-
Time Signature Scheme. For each 1 ≤ i ≤ k the hash value H(sigi) gets com-
puted. If mi = 0 then H(sigi) must be H(sigi) = Yi0 otherwise H(sigi) must be
H(sigi) = Yi1 to be a valid signature.

4 One-Time Signatures

2.3 Winternitz One-time Signature Scheme

One major disadvantage of the Lamport One-Time Signature Scheme is the big
size of the public and private key. To sign a message M = {0, 1}k, 2 ∗ k hash
values have to be saved. To achieve a security of at least O(280), a hash function
must have at least 160 bits. Therefore, the private and the public key must have
at least 160 ∗ 2 ∗ k = 320 ∗ k bits. In most cases a message will be hashed before
it is signed, so that the size k of the message M will also be 160 bits long. This
results in a total size of the public and private key of 160∗2∗160 bits = 51200 bits
= 6400 bytes. Hence, a public key of the Lamport One-Time Signature Scheme
is 50 times larger than an equivalent 1024-bit RSA public key. The signature sig
is the concatenation of k hash values. For k = 160, the signature size is 160 ∗ k
bits = 25600 bits = 3200 bytes. Hence a LOTSS signature is about 25 times
bigger than an equivalent 1024-bit RSA signature. In the Winternitz One-time
Signature Scheme the signature size can be reduced at the cost of hash operations.

Figure 2.1: Building the values bi and the checksum C

2.3.1 Key generation

Let H : {0, 1}∗ → H : {0, 1}s be a cryptographic hash function. At first the pa-
rameter w, with w ∈ N , is chosen and and t = ⌈s/w⌉+⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉
gets calculated. A larger parameter w reduces the signature size but increases
the calculation time. We now choose t random numbers X1, ..., Xt ∈ {0, 1}s.
These random numbers are the private key X = (X1||...||Xt). In the next step
the public key Y is generated by computing Yi = H2w−1(Xi) for i = 1, ..., t. The

2.3 Winternitz One-time Signature Scheme 5

Figure 2.2: Signature generation and verification with the Winternitz One-Time
Signature Scheme

Public key Y = H(Y1||...||Yt) is the hash value of the concatenation of all Yi with
i = 1, ..., t.

2.3.2 Signature generation

Let M = m1, ...,ms ∈ {0, 1} be the message to be signed, X1, ..., Xt the private
key and w and t the parameters as described above. The message M is split up
into ⌈s/w⌉ blocks b1, ..., b⌈s/w⌉ of the length w. If necessary the message is padded
with zeros from the left first. We now treat bi as the integer encoded by the

respective block and compute the checksum C =
⌈s/w⌉
∑

i=1

2w − bi. We then split the

binary representation of C into ⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉ blocks b⌈s/w⌉+1, ..., bt

of length w. If necessary C is padded with zeros from the left. We now treat
bi as the integer encoded by the the block bi and compute sigi = Hbi(Xi) for
i = 1, ..., t with H0(Xi) = Xi. The signature sig = (sig1||...||sigt) of the message
M is the concatenation of all sigi for i = 1, ..., t.

6 One-Time Signatures

2.3.3 Signature verification

To verify a signature sig = (sig1||...||sigt) for a given message M = {0, 1}s the
parameters b1, ..., bt are computed first. This is done in the same way as during
the signature generation. For i = 1, ..., t sig′

i = H2w−1−bi(sigi) is calculated.
sig′

i = H2w−1−bi(sigi) = H2w−1−bi(Hbi(Xi)) = H2w−1(Xi) = Yi.
Hence if Y ′ = H(sig′

1||...||sig′
t) equals Y = H(Y1||...||Yt) the signature is valid.

Otherwise the signature is refused.

2.3.4 Choosing parameter w

The Winternitz One-Time Signature Scheme is very flexible due to the parameter
w. With the help of this parameter, a trade off between signature size and
computation time can be made. Choosing a bigger parameter w will result in
a smaller signature size, but the signature generation time and the signature
verification time will increase. We will now analyze the signature size depending
on the parameter w.

Signature Size: The signature sig = (sig1||...||sigt) contains t blocks of sigi.
Each block has the length of one output of the hash function. Hence the bit
size of the signature |sig| is |sig| = t∗s = ⌈s/w⌉+⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉∗
s ≈ s/w. So the signature size is about inversely proportional to the pa-
rameter w.

We will now analyze the impact of the parameter w on the calculation time in
each phase of the Winternitz-Signature Scheme.

Key generation time (gentime): During the key generation t random numbers
Xi must be chosen and H2w−1(Xi) must be computed for t ≈ s/w values
Xi. Therefore gentime ≈ s/w ∗ (2w − 1) ∗ hashtime + s/w ∗ randtime =
O(2w) ∗ hashtime + O(1/w) ∗ randtime with hashtime being the time for one
hash operation and randtime being the time to generate one random number.
So the key generation time increases exponentially with the size of w.

Signature time (sigtime): To generate the signature sig = (sig1||...||sigt) the
value sigi must be computed t ≈ s/w times. To generate one sigi = Hbi(Xi)

with bi <= 2w − 1 in average (
w−1
∑

j=1

2j)/w = 2w−2
w

hash operations must be

performed. This results in a signing cost of sigtime ≈ s/w ∗ (2w − 2)/w∗
hashtime = s ∗ (2w − 2)/w2∗ hashtime = O(2w).

Verification time (vertime): To verify a message sig′
i must be computed t ≈ s/w

times. To calculate one sigi = H2w−1−bi with bi <= 2w − 1 on average

(
w−1
∑

j=1

2j)/w = 2w−2
w

hash operations must be performed. So the verification

2.3 Winternitz One-time Signature Scheme 7

time is the same as the signature time: vertime = sigtime ≈ s∗ (2w −2)/w2∗
hashtime = O(2w).

Hence, the optimal value for parameter w depends on the available resources.
If signing is fast enough, w can be increased to reduce the signature size. But the
signature time increases exponentially, while the signature size decreases linearly,
so that choosing a too big value for w is not recommended.

3 Merkle-Signature Scheme

The biggest problem of One-Time Signature Schemes is the key management.
Exchanging a public key is very complex. It must be guaranteed, that the public
key belongs to the intended communication partner and that the public key has
not been modified. Therefore, few public keys should be used and the public keys
should be rather short. But in One-Time Signature Schemes, a new public key
is used for every signature and the public key is quite big, compared with other
signature schemes. To make One-Time Signature Schemes feasible, an efficient
key management, that reduces the amount of public keys and their size, is needed.
In [Mer79] Merkle introduced the Merkle Signature Scheme (MSS), in which one
public key is used to sign many messages.

Figure 3.1: Merkle tree with 8 leafs

3.1 Key generation

The Merkle Signature Scheme can only be used to sign a limited number of
messages with one public key pub. The number of possible messages must be a

3.2 Signature generation 9

power of two, so that we denote the possible number of messages as N = 2n.
The first step of generating the public key pub is to generate the public keys Xi

and private keys Yi of 2n one-time signatures, as described in chapter 2. For each
public key Yi, with 1 ≤ i ≤ 2n, a hash value hi = H(Yi) is computed. With
these hash values hi a Merkle Tree (also called hash tree) is build. We call a
node of the tree ai,j, where i denotes the level of the node. The level of a node
is defined by the distance from the node to a leaf. Hence, a leaf of the tree has
level i = 0 and the root has level i = n. We number all nodes of one level from
the left to the right, so that ai,0 is the leftmost node of level i. In the Merkle
Tree the hash values hi are the leafs of a binary tree, so that hi = a0,i. Each
inner node of the tree is the hash value of the concatenation of its two children.
So a1,0 = H(a0,0||a0,1) and a2,0 = H(a1,0||a1,1). An example of a merkle tree is
illustrated in figure 3.1 .

In this way, a tree with 2n leafs and 2n+1 − 1 nodes is build. The root of the
tree an,0 is the public key pub of the Merkle Signature Scheme.

3.2 Signature generation

To sign a message M with the Merkle Signature Scheme, the message M is signed
with a one-time signature scheme, resulting in a signature sig′, first. This is done,
by using one of the public and private key pairs (Xi, Yi,). The corresponding leaf
of the hash tree to a one-time public key Yi is a0,i = H(Yi). We call the path
in the hash tree from a0,i to the root A. The path A consists of n + 1 nodes,
A0, ...An, with A0 = a0,i being the leaf and An = an,0 = pub being the root of
the tree. To compute this path A, we need every child of the nodes A1, ..., An.
We know that Ai is a child of Ai+1. To calculate the next node Ai+1 of the
path A, we need to know both children of Ai+1. So we need the brother node
of Ai. We call this node authi, so that Ai+1 = H(Ai||authi). Hence, n nodes
auth0, ..., authn−1 are needed, to compute every node of the path A. We now
calculate and save these nodes auth0, ..., authn−1. How this is done efficiently is
discussed in chapter 4. These nodes, plus the one-time signature sig′ of M is the
signature sig = (sig′||auth2||auth3||...||authn−1) of the Merkle Signature Scheme.
An example of an authentication path is illustrated in figure 3.2.

3.3 Signature verification

The receiver knows the public key pub, the message M , and the signature sig =
(sig′||auth0||auth1||...||authn−1). At first, the receiver verifies the one-time signa-
ture sig′ of the message M . If sig′ is a valid signature of M , the receiver com-
putes A0 = H(Yi) by hashing the public key of the one-time signature. For j =
1, .., n− 1, the nodes of Aj of the path A are computed with Aj = H(aj−1||bj−1).

10 Merkle-Signature Scheme

Figure 3.2: Merkle tree with path A and authentication path for i=2

If An equals the public key pub of the merkle signature scheme, the signature is
valid.

3.4 Cost analysis

The big advantage of the Merkle Signature Scheme is, that many signatures can
be generated with using only one public key. However, this advantage comes with
an increase of computation time and signature length. In the following we will
examine the computation time of each part of the signature process. To generate
the public key pub, 2n one-time signature keys must be generated. Then every
node of the hash tree must be computed. The tree consists of 2n+1−1 nodes. One
hash operation is needed to calculate a node, so that 2n+1 − 1 hash operations
are needed to generate the public key. It is obvious, that the size of such a tree is
limited. To compute 240 nodes is very costly, to compute 280 nodes is impossible.

To generate a signature the nodes auth0, ..., authn−1 are needed. If you do
not store the nodes of the tree, the nodes must be generated again for every
signature. Generating the tree is very expensive, so that generating the entire tree
for every signature is impracticable for bigger trees. But saving all 2n+1−1 nodes
would result in huge storage requirements. Hence, a good strategy is needed, to
generate the signature without saving too many nodes, at a still efficient time.
This problem is called The Merkle tree traversal problem and is described in
chapter 4.

The verification time is quite fast, compared to the signature time. At first,

3.4 Cost analysis 11

the one-time signature must be verified. After that, the path A = A1, ..., An must
be computed. To do this, only n hash operations are needed, one for every node.

The signature of the Merkle Signature Scheme consists of the one-time signa-
ture sig′ and n nodes auth0, ..., authn−1. If a 160 bit hash function is used, the
signature size would be |sig| = |sig′| + n ∗ 160 bits.

4 The Merkle tree traversal
problem

In this chapter, we will focus on the problem, of efficiently computing the next
authentication path, needed for the Merkle Signature Scheme. At first, we will
introduce the treehash algorithm, to efficiently compute a node in a hash tree.
This algorithm will be used later, to generate the public key and to generate the
next authentication path.

4.1 The treehash algorithm

For the traversal techniques, we need an algorithm, that computes efficiently the
nodes of the tree. Assume a binary tree with 2n leafs. The height H of a node, is
defined by the distance of the node to a leaf. So the root has the height H = n,
while the leafs have the height H = 0. We define the node ai,j as the jth node
from the left (starting with j = 0) of the height i. So a0,0 is the leftmost leaf of
the tree, and an,0 the root. To compute a node of the hight H = h, 2h − 1 nodes
must be computed. The treehash algorithm needs 2h − 1 operations, to calculate
a node of the hight h, while saving as few nodes at once as possible.

The main idea of the treehash algorithm is to calculate the needed subtree
from left to right and only saving the nodes, that are still needed. This is done,
by using a stack. At first the stack only consists of the leftmost leaf. Then the
next leaf is added. The algorithm now checks whether the last two nodes on the
stack are of the same height or not. If they are of the same height, the two nodes
are removed from the stack, and their parent is built and pushed on the stack. If
the last two nodes on the stack are of different height, then a new leaf is pushed
on the stack. This step is repeated, until the node of the wanted height has been
generated.

Algorithm: TREEHASH (start, maxheight)

1. Set leaf = start and create empty stack.

2. Consolidate: If top 2 nodes on the stack are equal height:

• Pop node value P (nright) from stack.

• Pop node value P (nleft) from stack.

4.2 The classic traversal 13

• Compute P (nparent) = f(P (nleft||P (nright)).

• If height of P (nparent) = maxheight, output P (nparent).

• Push P (nparent) onto the stack.

3. New Leaf: Otherwise:

• Compute P (nl) = LEAFCALC(leaf).

• Push P (nl) onto the stack.

• Increment leaf .

4. Loop to step 2.

To be able to run multiple instances of treehash, we define an object stackh

with two methods, stackh.initialize(startnode, h) and stackh.update(t). With
the initialize method we simply define the start leaf and the height of the re-
sulting node. The method update runs the steps 2 or 3 of the treehash algorithm
t times. For example stack2.initialize(0, 2) means, that in stack2 we compute
nodes up to the height h = 2, beginning with the 0th node. stack2.update(3)
will now perform 3 operations of treehash on stack2. The first operation will be
to push node a0,0 on the stack. The second operation will be to push the node
a0,1 on the stack. Now the last two nodes on the stack are of equal height. So
in the third operation these two nodes are removed and a1,0 gets computed and
push on the stack. Because the treehash should only perform three operations,
the algorithm stops at this point. When stack2.update(t) is called again, the
algorithm will continue at this point, by pushing the node a0,2 on the stack.

4.2 The classic traversal

In the first step of the Merkle Signature Scheme, the public key, which is the root
of the tree, gets computed. This is done, by using the treehash algorithm. During
this computation, every node of the tree is generated, so that we can easily save
the first authentication path auth. We do this, by saving all nodes authi with
authi = ai,1 for i = 1, ..., n − 1. These nodes auth = {auth1, ..., authn−1} are
the right brothers of the nodes of the leftmost path. In addition to the authi

nodes we also store the nodes of the leftmost path in the objects stacki, with
stacki = ai,0 for i = 1, ..., n−1. We will need these objects, to efficiently generate
the next authentication path.

The next phase is the output and update phase. In this phase, we output the
leaf value together with the authentication path. After that, we generate the
next authentication path. Generating the output is quite simple. We use the
function LEAFCALC to calculate the value of the leaf (The leaf values is the
hash value of the public key of the one-time signature. So LEAFCALC builds

14 The Merkle tree traversal problem

the hash value of the one-time signature public key). The authentication path
auth = auth1, ..., authn−1 has been already computed. So the important part is
to calculate the next authentication path. To do this, we need a counter leaf ,
which points to the current leaf to be calculated, and we need the old authen-
tication path auth. In addition to that, we also have the objects stacki for i =
0, ..., n− 1. We can modify these by the functions stacki.initialize(startnode, h)
and stacki.update(t), as described above.

Figure 4.1: Merkle Tree before the first output and update phase

We now have to determine which authentication nodes authh have to be changed,
so that auth = autho, ..., authH−1 is the authentication path for the next leaf
leaf + 1. The authentication node of the height h only needs an update, if 2h

divides leaf + 1 without remainder. The new authentication node authh has
already been generated and is saved in the stack stackh. So if 2h divides leaf +1,
authh = POP (stackh). Then stackh is empty and we use this stack to precalcu-
late the next authentication node. In 2h steps, when leaf = leaf + 1 + 2h, authh

needs an update again. So we search for the leftmost leaf, startnode, of the next
authentication node, of the height h. This is startnode = leaf + 1 + 2h + 2h

if the current authh is a left-node and startnode = leaf + 1 if the current
authh is a right-node. So startnode = leaf + 1 + 2h ⊕ 2h. Hence we set
stackh.initialize(startnode, h).

This illustrated in figure 4.3. In this figure auth1 has changed. The next change
of auth1 will be when leaf = leaf+1+21. Hence, we need the authentication node
of level 1 for the leaf +1+21. This node is sack1. The leftmost leaf of this node
stack1 is leaf +1+21+21 = startnode. SO stack1.initialize(leaf +1+21+21, 1).

We could now use the treehash algorithm to compute stackh at once. But this
would take 2h+1 − 1 steps. In the worst case, H − 1 nodes authh can change at

once, so that we would need
H−1
∑

h=0

2h+1 − 1 operations to compute one signature.

4.2 The classic traversal 15

Figure 4.2: Merkle Tree after the first output and update phase

Figure 4.3: Merkle Tree after the second output and update phase

16 The Merkle tree traversal problem

We know, that we do not need to change authh for the next 2h signatures. Hence,
we have 2h signatures time, to make the 2h+1 − 1 operations which generate the
next node. Therefore, we only do two operations of updating for h = 0, ..., H − 1
per signature, by calling stackh.update(2) for h = 0, ..., H − 1. In this way, we
only perform (H − 1) ∗ 2 operations per signature in the worst case.

Algorithm: Classic Merkle Tree Traversal

1. Set leaf = 0.

2. Output:

• Compute and output leaf with LEAFCALC(leaf)

• For each h ∈ [0, H − 1] output {authh}.

3. Refresh Auth Nodes:

For h such that 2h divides leaf + 1:

• Set authh be the sole node value in stackh.

• Set startnode = (leaf + 1 + 2h) ⊕ 2h.

• stackh.initialize(startnode, h).

4. Build Stacks:
For all h ∈ [0, H − 1]:

• stackh.update(2).

5. Loop

• Set leaf = leaf + 1.

• If leaf < 2H go to Step 2.

4.3 Merkle tree traversal in log space and time

In [Szy04] an improvement to the Classic Merkle Traversal Algorithm was in-
troduced. The main goal of this improved algorithm is to reduce the memory
requirements. In the classic algorithm up to H instances of treehash may be
concurrently active, one for each height less than H. In one treehash, up to h+1

nodes must be stored at once. Hence, up to
H−1
∑

h=0

h + 1 = H∗(H+1)
2

nodes must be

stored during one signature generation. The main idea of the improved algorithm
is, to reduce the memory requirements, by reducing the number of active treehash
instances during the signature generation.

4.3 Merkle tree traversal in log space and time 17

To generate the next authentication node in stackh, 2h+1 − 1 operations are
needed. To generate the next authentication node in stackh+1, 2h+2 − 1 oper-
ations are needed. In the classic algorithm, during one signature generation,
stackh.update(2) and stackh+1.update(2) are called once. But if for the first 2h/2
signatures only stackh.update(4) is called, then stackh will be computed after
2h/2 signatures. For the next 2h/2 signatures, stackh+1.update(4) can be called,
so that at the end, after 2h signatures, the same values have been computed,
as in the classic algorithm. However, in the first 2h/2 signatures stackh+1 was
empty and in the next 2h/2 signatures only one node was stored in the stackh.
Hence, we could reduce the memory requirements. The Logarithmic Merkle Tree
Traversal algorithm below is based on this idea.

Algorithm: Logarithmic Merkle Tree Traversal

1. Set leaf = 0.

2. Output:

• Compute and output leaf with LEAFCALC(leaf)

• For each h ∈ [0, H − 1] output {authh}.

3. Refresh Auth Nodes:

For h such that 2h divides leaf + 1:

• Set authh be the sole node value in stackh.

• Set startnode = (leaf + 1 + 2h) ⊕ 2h.

• stackh.initialize(startnode, h).

4. Build Stacks:
Repeat the following 2H − 1 times:

• Let lmin be the minimum of {stackh.low} for all h = 0, ..., H − 1.

• Let focus be the least h so that stackh.low = lmin.

• Stackfocus.update(1).

5. Loop

• Set leaf = leaf + 1.

• If leaf < 2H go to Step 2.

The algorithm prefers to complete stackh for the lowest h first, unless another
stack has a lower tail node. Hence, the algorithm will not start to compute a new
stackh, until there is no node stored in any stack, that has a height below h.

18 The Merkle tree traversal problem

The presented algorithm just stores 3log(N) nodes in the worst case and needs
to compute 2log(N) operations in the worst case. (With N being the number of
available signatures, hence N = 2n) In the preprint version of the paper [Szy03],
Szydlo presented an algorithm, which is based on the same idea, but achieves this
with only log(N) operations and 3log(N) stored nodes. This is due to a better,
but more complex, scheduling algorithm.

4.4 Fractal tree representation and traversal

The main idea of the fractal traversal [MJS03] is, to split up the merkle tree in
subtrees and to save and compute these subtrees, instead of single nodes. To
describe the algorithm, we need some notations. Each subtree t has the same
height h. Each root of one subtree is signed with a signature of the superior
subtree. There are L = H/h levels of subtrees from the bottom to the top of the
merkle tree. If a node ai∗h,j is a leaf of subtree ti, then i denotes the level of the
subtree, with 1 ≤ i ≤ L. We define the subtree ti,j, as the jth subtree from the
left of level i.

During the key generation, all subtrees Exiti, which contain a node of the
next authentication path, are stored. At the beginning, these subtrees Exitsi

are the leftmost subtrees Exitsi = ti,0 of each level i = 1, ..., L. If ai∗h,j is the
root of subtree Exitsi, then the next subtree of level i, which will be needed, is
the subtree Desirei with the root aih,j+1. These subtrees Desirei are also saved
during the key generation.

The signature generation phase consists again of two phases. In the output
phase, the signature and the authentication path is outputted. In the update
phase, the subtrees with the next authentication node Existi are set and the sub-
trees Desirei are computed. To generate the subtree Desirei, we use a slightly
modified treehash algorithm. In this treehash algorithm, we save all nodes of the
hight smaller than ih, because these nodes are nodes of the subtree. We also
stop one step earlier, because we do not need to calculate the root (Instead of
the root, the leaf of the subtree of level i + 1 is used as an authentication node).

Algorithm: Stratified Merkle Tree Traversal

1. Set leaf = 0.

2. Output:

• Compute and output leaf with LEAFCALC(leaf)

• For each j ∈ [0, H − 1] output {authj}.

4.4 Fractal tree representation and traversal 19

3. Next Subtree:
For each i for which Existi is no longer needed, i.e., for i ∈ {1, 2, ..., L}
with leaf = 1(mod2hi):

• Set Existi = Desirei.

• Create new empty Desirei (if leaf + 2ih < 2H).

4. Grow Subtrees
For each i ∈ {1, 2, ..., h}: Grow tree Desirei by applying 2 units to modified
treehash (unless Desirei is completed)

5. Increment leaf and loop back to step 2 (while leaf < 2H).

So the algorithm performs up to two operations for every subtree, in each round.
There are L = H/h subtrees. This gives an upper bound of the computation
time of sigtime = 2(L − 1) ≤ 2H/h. The maximum space required during the
computation is sigspace. There are L existing subtrees and L−1 desired subtrees.
Each tree consists of 2h+1 − 1 − 1 nodes, because the root value must not be
stored. During the computation of a desired tree, up to h∗ (i−1) tail nodes must
be saved. So sigspace ≤ (2L − 1)(2h+1 − 2) + h(L − 2)(L − 1)/2.

A good value for h, in which the space requirements are minimal, would be h =
logH = loglogN .(See [FRACTAL]) Using this parameter would result in a time
and space bound of sigtime = 2logN/loglogN and sigspace = 5/2log2N/loglogN .

5 Improvements to
Merkle-Signature Scheme

In [JB06] and [JB07] improvements to the original Merkle Signature Scheme were
proposed. The improvements consist of two main ideas. The first idea is, to use
a pseudo random number generator (PRNG) with a seed value to generate the
private keys of the one-time signatures. As a result, just the seed of the PRNG
needs to be stored, instead of all private keys.

The other idea is, to use many smaller merkle trees instead of one big tree.
One disadvantage of the Merkle Signature Scheme is the still limited number of
signatures. Building a merkle tree for 280 signatures is not possible, due to the
enormous calculation costs to compute the public key. So instead of building one
Merkle Tree with 280 signatures, a tree t1,0 with only 220 leafs and another tree
t2,0 with 220 signatures is build. The public key of t2,0 is signed with a signature
of t1,0. Hence, t1,0 is the parent tree of t2,0. In the same way the trees t3,0 and t4,0

are build. The parent tree of t3,0 is t2,0 and the parent of t4,0 is t3,0. A message is
signed with the merkle tree t4,0. The public key of t4,0 is signed by the tree t3,0,
which is signed by t2,0. t2,0 is signed by t1,0. The public key of t1,0 is the public
key of this signature scheme. In this way 220 messages can be signed with t4,0.
After these 220 signatures all one-time keys of t4,0 are used and a new tree t4,1

is build. This tree is signed again by t3,0. After 220 different trees t4,i have been
generated, a new tree t3,1 is needed to sign t4,220 . This new tree is signed again by
t2,0. 220 different trees t3,i can be signed by t2,0. So that after 220 different trees
t3,i a new tree t2,1 is build. 220 trees t2,i can be signed by t1,0, so that in this way
220 ∗220 ∗220 ∗220 = 280 signatures can be generated with only one public key (the
one of t1). But nevertheless only four trees of the size 220 have been generated
and stored at once. Hence, a in practice endless number of signatures can be
generated with one public key, without making the signature cost impracticable.
This principle is illustrated in figure 5.1.

In [JB07] it is shown, that using this strategy, it is possible to sign a message on
a Pentium dualcore 1.8GHz in 10.1 ms and verify a signature in 10.1 ms. In the
Merkle Signature Scheme many trade offs between signature size and speed can be
made. The following table 5.1 shows the signature time and memory requirements
for 4 different parameters. The table shows the memory requirements during the
output phase memoutput and the update phase memupdate. The signature length
is memsignature. To generate the public key tkeygen minutes are needed. To sign a
message tsign ms are needed and to verify a signature tverify ms are needed. For

Improvements to Merkle-Signature Scheme 21
signatures memupdate memoutput memsignature tkeygen tsign tverify

240 3160 bytes 1640 bytes 1860 bytes 723 min 26.0 ms 19.6 ms
240 3200 bytes 1680 bytes 2340 bytes 390 min 10.7 ms 10.7 ms
280 7320 bytes 4320 bytes 3620 bytes 1063 min 26.1 ms 18.1 ms
280 7500 bytes 4500 bytes 4240 bytes 592 min 10.1 ms 10.1 ms

Table 5.1: Timings and memory requirements

details on the used algorithms and parameters see [JB07].

Figure 5.1: GMSS using four levels of trees

6 Cryptanalysis

In this chapter we will analyze the security of the Merkle Signature Scheme. To
do this, we will consider what an attacker would have to do, to forge a signature.
We assume that sig = (sig′||auth0||auth1||...||authn−1) is a valid signature of the
message m, of the Merkle Signature Scheme, with the valid public key pub. sig′ is
a valid one-time signature and auth0, ..., authn−1 the authentication path for the
leaf An = H(Yi), with An being the hash value of the public key Yi of the one-
time signature. To verify the message M , at first the one-time signature sig′ will
be verified. If sig′ is a valid signature, then A0 gets computed with A0 = H(Yi).
Then the nodes Ai = H(Ai−1||authi−1) for i = 1, ..., n are computed. If An = pub,
then the signature is valid.

If an attacker, who knows message m and the signature sig, wants to counterfeit
a signature of the message m′, he has two options.

6.1 Case 1: H(Y ′
i) = H(Yi)

The first option would be, that the attacker finds a valid one-time signature sig′
a

with the public key Y ′
i and H(Y ′

i) = H(Yi) = A0. An attacker could archive
this, by finding a valid one-time signature of the message m′ with the public key
Y ′

i = Yi. Finding such a signature would mean to break the one-time signature.
Therefore, if the attacker is able to break the one-time signature, he is able to
break the Merkle Signature Scheme. If the attacker is not able to break the
one-time signature, the attacker needs to find a signature sig′

a with the public
key Y ′

i 6= Yi and H(Y ′
i) = H(Yi). Hence, the attacker needs to find for a given

input of a hash function, another input, which has the same hash value. A hash
function in which this is possible is not second preimage resistant. Therefore, if
the used hash function is second preimage resistant, the attacker will not be able
to find such a one-time signature public key Y ′

i .
So the Merkle Signature Scheme is secure in case 1, if the one-time signature

is secure and the used hash function is second preimage resistant.

6.2 Case 2: H(Y ′
i) 6= H(Yi)

The other option would be, to generate a valid one-time signature sig′
a with

the public key Y ′
i and A′

0 = H(Y ′
i) 6= H(Yi) = A0. In this case, the attacker

6.3 Differential Side Channel resistant 23

needs to change the authentication path, so that A′
n = An = pub with A′

i =
H(a′

i−1||auth′
i−1) for i = 1, ..., n to make the signature valid. If the attacker finds

one auth′
i so that H(A′

i||auth′
i) = A′

i+1 = Ai+1 he has found a valid authentication
path. Hence, to counterfeit a signature, the attacker needs to find one auth′

i

so that H(A′
i||auth′

i) = H(Ai||authi). If the used hash function is not second
preimage resistant, then such an attack is possible. But if the used hash function
is second preimage resistant, an attacker will not be able to find such an authi.

So the Merkle Signature Scheme is secure, if the used one-time signature is
secure and the used hash function is second preimage resistant. In chapter 2 we
defined a cryptographic secure hash function, as a hash function, which is second
preimage resistant and collision resistant. A hash function, which is collision
resistant with a security of O(280), needs at least 2160 bits (see chapter 2). Note,
that we do not need a collision resistant hash function for the Merkle Signature
Scheme. The used hash function just needs to be second preimage resistant.
Hence, it is possible to use a 80 bit hash function which is preimage resistant, to
archive a security of O(280).

6.3 Differential Side Channel resistant

The Merkle Signature Scheme has an interesting characteristic. It is resistant
against differential side channel attacks. In a differential side channel attack,
the attacker gains extra information by eavesdropping a side channel during the
computation of the signature. Classical side channels are the power consumption,
the time the algorithm needed, or electromagnetic leaks. The attacker collects
these information for many different signatures with the same public key. The
goal is to gain extra information of the secret by comparing these information.

However, this strategy will not be successful against the Merkle Signature
Scheme. The secret of the Merkle Signature Scheme are the private keys of the
one-time signatures. But for each signature a new private key is used. Hence, an
attacker can not gather information about a secret by comparing the informations
gathered during the computation of two signatures, because the secrets have no
relation to each other. Everything else of the Merkle Signature Scheme is public.
All nodes of the tree can be published, because they all will be part of at least
one signature and therefore will be public anyways.

7 Conclusion

The Merkle Signature Scheme is known for 30 years, but most improvements to
the Merkle Signature Scheme like [Szy04], [JB06], [JB07], and [MJS03] were pub-
lished within the past five years. These improvements begin to make the Merkle
Signature Scheme a reasonable alternative to conventional signature schemes. As
seen in chapter 5, it is possible to sign and verify a message with the Merkle
Signature Scheme in a reasonable time, with a public key that can be used for
280 signatures. Unfortunately, the signature size and the storage requirements
are still very big compared to other digital signature schemes such as DSA or the
RSA Signature Scheme. Hence, if necessary, conventional signature schemes can
be replaced by the Merkle Signature Scheme in applications which have enough
storage available and in which the big size of the signature does not matter.

The big advantage of the Merkle Signature Scheme is, that the security does
not rely on the difficulty of any mathematic problem. The security of the Merkle
Signature Scheme depends on the availability of a secure hash function and a
secure one-time digital signature. Even if a one-time signature or a hash function
becomes insecure, it can be easily exchanged. This makes it very likely that the
Merkle Signature Scheme stays secure even if the conventional signature schemes
become insecure.

Bibliography

[AMV96] P. Van Oorschot, A. Menezes, S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

[Ede07] Boris Ederov. Merkle tree traversal techniques. Bachelor Thesis,
Darmstadt University of Technology Department of Computer Science
Cryptography and Computer Algebra, 2007.

[JB06] E. Dahmen, M. Dring, E. Klintsevich, J. Buchmann, L.C. Coron-
ado Garca. CMSS - an improved merkle signature scheme. Progress in
Cryptology - Indocrypt 2006, 2006.

[JB07] E. Klintsevich, K. Okeya, C.Vuillaume, J. Buchmann, E.Dahmen.
Merkle signatures with virtually unlimited signature capacity. 5th In-
ternational Conference on Applied Cryptography and Network Security
- ACNS07, 2007.

[Mer79] Ralph Merkle. Secrecy, authentication and public key systems/ A cer-
tified digital signature. Ph.D. dissertation, Dept. of Electrical Engi-
neering, Stanford University, 1979.

[MJS03] S. Micali, M. Jakobsson, T. Leighton, M. Szydlo. Fractal merkle tree
representation and traversal. RSA-CT 03, 2003.

[Szy03] Michael Szydlo. Merkle tree traversal in log space and time. (preprint
version, 2003), 2003.

[Szy04] Michael Szydlo. Merkle tree traversal in log space and time. Eurocrypt
2004, 2004.

