DESIGN SPACE EXPLORATION OF PRESENT IMPLEMENTATIONS FOR FPGAS

Mohamad Sbeiti, Michael Silbermann, Axel Poschmann, Christof Paar

Horst Gortz Institute for IT Security
Embedded Security Group
44801 Bochum, Germany
{mohamed.sbeiti,michael.silbermann } @rub.de
{poschmann,cpaar } @crypto.rub.de

ABSTRACT

In this paper we investigate the performance of the block
cipher PRESENT on FPGAs. We provide implementation re-
sults of an efficiency (i.e. throughput per slice) optimized
design and compare them with other block ciphers. Though
PRESENT was originally designed with a minimal hardware
footprint in mind, our results also highlight that PRESENT
is well suited for high-speed and high-throughput applica-
tions. Especially its hardware efficiency, i.e. the throughput
per slice, is noteworthy.

L.INTRODUCTION

PRESENT is a recently proposed lightweight block cipher
that was specifically designed with a low hardware footprint
in mind [1]. Besides this, another major design goal was
simplicity which eases implementation. The authors claim
that PRESENT is resistant against known attacks and provide
proofs for linear and differential cryptanalysis. First crypt-
analytic results of independent researchers underline these
claims [2].

Up to now there have been only a few papers published
that deal with implementations of PRESENT. Rolfes et al. in-
vestigate different architectures for ASIC implementations
in [3]. Graber et al. provide implementation results for a
lightweight Instruction Set Extension for bit sliced software
implementations [4]. Guo et al. investigate the overall per-
formance of a System-On-Chip (SoC) platform that uses a
PRESENT implementation as a cryptographic co-processor
in [5]. However their focus lies on hardware software co-
design rather than on a plain hardware implementation.

Up to now no design space exploration of PRESENT on
FPGAs has been published. Our main contribution is to
close this gap and provide the first implementation results
of such kind. The remainder of this work is organized as
follows: In Section 2 the PRESENT algorithm is briefly re-
called. Subsequently, in Section 3 our implementation is
described and our results are presented and compared with

FPGA implementations of different block ciphers. Finally,
in Section 4 this paper is concluded.

2. THE PRESENT ALGORITHM

PRESENT is symmetric encryption algorithm that was
first published in [1]. It was specifically designed with ultra-
constrained applications such as passive low-cost RFID-tags
in mind. PRESENT is a so-called substitution-permutation
network (SPN) with a block size of 64 bits and two differ-
ent key sizes: 80 or 128 bits. From here on we refer to the
version with an 80 bit key as PRESENT-80 and the one with
a 128 bit key as PRESENT-128. PRESENT has 31 regular
rounds and a final round that only consists of the key mix-
ing step. One regular round consists of a key mixing step, a
substitution layer, and a permutation layer.

The substitution layer consists of 16 S-Boxes that each
have 4-bit input and 4-bit output (4x4): S : F5 — F5. The
S-Box is given in hexadecimal notation according to Table 1.
The bit permutation used in PRESENT is given by Table 2.
Bit ¢ of STATE is moved to bit position P(z). In other words:
the bit on position 0 of the input to the P- Layer is moved to
position 0, the bit on position 4 is moved to position 1, the
bit on position 8 to position 2 and so on.

The key schedule of PRESENT-80 consists of a 61-bit
left rotation, an S-Box, and a XOR with a round counter.
Note that PRESENT uses the same S-Box for the datapath
and the key schedule, which allows to share resources. The
user-supplied key is stored in a key register and its 64 most
significant (i.e. leftmost) bits serve as the round key. The
key register is rotated by 61 bit positions to the left, the

Table 1. S-Box Layer of PRESENT
X 0123456789 ABCDETF
Sx]|C56B90AD3EFS84721




Table 2. Permutation layer of PRESENT

i | PG) i | PG) i | PG) i | PG)
0] 0 6| 4 32 8 8] 12
T |16 17 [ 20 33 | 24 49 [ 28
2 | 32 18 | 36 34| 40 50 | 44
3| 48 9] 52 35 | 56 51 | 60
71 20| 5 36| 9 52| 13
5 17 21 | 21 37| 25 53 | 29
6 | 33 2| 37 38| 41 54 [ 45
7 [ 49 23| 53 39| 57 55 | 61
8 | 2 2% 6 40 | 10 56 | 14
9 | 18 25 | 22 41| 26 57 [ 30

10 | 34 26 | 38 42 | 42 58 | 46
11| 50 27 | 54 43 | 58 59 | 62
12| 3 28 | 7 44 | 11 60 | 15
13| 19 29 | 23 45 | 27 61 | 31
14| 35 30 | 39 46 | 43 62 | 49
15 | 51 31 | 55 47 | 59 63 | 63

generateRoundKeys()

for i =1 to 31 do
addRoundKey (STATE, K;)
sBoxLayer(STATE)
pLayer(STATE)

end for

addRoundKey (STATE,K32)

Fig. 1. A top-level algorithmic description of PRESENT.

left- most four bits are passed through the PRESENT S-Box,
and the round counter value ¢ is exclusive-ored with bits
kigkigkirkigkis of K with the least significant bit of the
round counter on the right. The key schedule of PRESENT-
128 is slightly different from the one of PRESENT-80. The
only difference is that it contains two S-Boxes and con-
sequently the 8 MSB are processed by the S-Boxes (and
not only the 4 MSB as in PRESENT-80). All other com-
ponents, i.e. the 61-bit left rotation, an S-Box, and an XOR
with a round counter, and also the order of processing stays
the same. For further details, the interested reader is re-
ferred to [1]. Testvectors, visualizations, and implemen-
tations of PRESENT can be downloaded from the website
www.lightweightcrypto.org/present.

3. FPGA IMPLEMENTATION OF PRESENT

The main design goals of the PRESENT block cipher
described in Section 2 were simplicity and high perfor-

\_ data_ready=1
A S

Fig. 2. Finite State Machine of the encryption core.

mance/area ratio, so that all cipher components can be easily
mapped in hardware. First, we describe our implementation
of the encryption algorithm of PRESENT. The top level de-
sign overview is shown in Fig. 3 and the interface of the ci-
pher top module is shown in Fig. 4. As can be seen from the
latter one our PRESENT-80 and PRESENT-128 entities have
212 and 270 I/O pins, respectively. We did not implement
any I/0O logic such as a UART interface in order to achieve
implementation figures for the plain PRESENT core. The in-
terface usually strongly depends on the target application.

We deliberately use additional I/O pins for a parallel key
input. There are two reasons why we abandon the options of
hard-coding the key inside the cipher module or implement-
ing serial interface to supply the key to the algorithm. First,
we want to reduce the control logic overhead to a minimum
to be able to present the results reflecting the performance of
the ciphering algorithm only. Secondly, most applications
will use PRESENT as an independent cipher module inside a
larger top entity, so that the key can be supplied externally
and in that perspective our implementation model offers the
best flexibility.

Unfortunately, the low-cost Spartan-1II XC3S200 FPGA
has no package with more than 173 I/O pins [6]. There-
fore we decided to move to the more advanced Spartan-
IIT XC3S400 which features a package (FG456) with 264
I/O pins. Larger Spartan FPGAs such as the Spartan-III
XC351000 feature even more I/O pins but also contain more
logic resources. Since we focus on lightweight and low-
cost implementations of PRESENT in this paper we chose the
smallest possible device Spartan-1II XC3S400 which is only
slightly larger (and hence more expensive) than the Spartan-
IIT XC3S200.

The entire cipher control logic was implemented as a 3-
state finite-state machine (see Fig.2). After reset the first
round begins and the two inputs of the algorithm, plaintext
and user-supplied key are read from the corresponding reg-
isters. The 64- and 80-bit multiplexers select the appropriate
input depending on the value of the round counter, i.e. initial
values for plaintext and key are valid only in round 1. Both
64- and 80-bit D-flip-flops are used for round synchroniza-



plaintext

64
[79:16] 80 T

7

41{4 4[&4
ciphertext

6’4 64 Qj- 64

Fig. 3. The data path of an area-optimized version of the
PRESENT-80 encryption unit.

data_in(63:0) data_out(63:0)

key(79:0)

clk

data_avall

rst data_ready

Fig. 4. Interface of the PRESENT-80 top module.

tion between the round function output and the output of the
key schedule. Part of the round key is then XOR-ed with the
plaintext. Key schedule and round function run in parallel
for each round 1 <7 < 32.

Implementation of both permutation and bit-rotation is
very straightforward in hardware, which is a simple bit-
wiring. The highly non-linear PRESENT S-Box function is
the core of the cryptographic strength of the cipher, and is
the only design component that takes a lion’s share of both
computational power and area. Two implementation options
for the PRESENT S-Box were taken in consideration in order
to optimize the efficiency of the cipher. Using Look-Up Ta-
bles (LUTS) for bit substitution is the most obvious one and
was implemented first. An alternative considered next was
determining a minimal non-linear Boolean function

S; F% — [y

(x3T22120) > Yis 0<:1<3

for each bit output of the PRESENT S-Box using only
standard gates, i.e. AND, OR and NOT. A tool named
espresso [7] helped us produce such minimal Boolean
functions for the PRESENT S-Box.

Interestingly, in some cases this modification yielded
performance boost in terms of max. frequency/throughput
and area requirements measured in occupied slices. E.g.,
for PRESENT-80 with espresso-optimized S-Box ISE
showed significant decrease in critical path delay due to
routing as compared to the S-Box implementation with
LUTs. From our results we conclude that espresso and

ciphertext

80
31 Ukﬂgxaled 80
I 0 1 <<19

{80 31 - counter

“D o
O 4 5

[79:76] | [19:15]

n_reset

[79:16] ‘

plaintext +
64 64 64 80

Fig. 5. The data path of an area-optimized version of the
PRESENT-80 decryption unit.

its minimal Boolean functions can yield better resources uti-
lization and may in some cases outpace ISE’s internal syn-
thesis mechanisms.

The decryption unit of PRESENT is very similar to the
encryption. The decryption data path is presented in Fig. 5.
The first round of decryption requires the last round key of
the encryption routine. For optimal performance we assume
that this last round key is precomputed and available at the
beginning of the decryption routine. The assumption is fair
since we have to perform this step only once for multiple
cipher texts.

We implemented both encryption and decryption func-
tions in VHDL for the Spartan-III XC3S400 (Package
FG456 with speed grade -5) FPGA core from Xilinx. We
used Mentor Graphics ModelSimXE 6.2g for simulation
purposes and Xilinx ISE v10.1.03 WebPACK for design
synthesis.

Table 3 summarizes the performance figures for our im-
plementations. All figures presented are from Post Place &
Route Timing Report. To achieve optimal results both Syn-
thesis and Place & Route Effort properties were set to High
and Place & Route Extra Effort was set to Continue on Im-
possible.

Numerous FPGA implementations of AES block cipher
exist. Some of them are tuned to maximize data throughput,
whereas others were designed for optimization of area re-
quirements and power consumption. There are also block ci-
phers that were designed specifically for hardware (SEA [8])
or even FPGA (ICEBERG [9]) applications. We compare
our PRESENT implementation with different existent FPGA
implementations of those ciphers. In some cases it is hard
to make a fair comparison, so additional information on im-
plementation platform and boundary conditions is provided.
Table 4 shows the results. Our results show that in the field
of low-cost FPGA cores, PRESENT offers both the small-
est area requirement and highest hardware efficiency com-
pared to AES as well as ICEBERG and SEA implementa-
tions. Note, that our implementation does not require any
Block RAM units while most AES implementations do. For
this matter we show the total equivalent slice count for each
implementation to highlight the real area requirements.

The speed grade of the Spartan devices has significant



Table 3. Performance results for encryption and decryption of one data block with PRESENT for different key sizes and S-Box

implementation techniques.

Key | enc/dec | S-box w/ || #LUTs | #FFs | Total equiv. | Max. freq. | #CLK | Throughput Efficiency
size Slices (MHz) cycles (Mbps) (Mbps/#Slices)
enc espresso 253 152 176 258 32 516 2.93
30 LUT 350 154 202 240 32 480 2.38
dec espresso 328 154 197 240 32 480 2.44
LUT 328 154 197 238 32 476 242
enc espresso 299 200 202 250 32 500 2.48
128 LUT 300 200 202 254 32 508 2.51
dec espresso 366 202 221 239 32 478 2.16
LUT 366 202 221 239 32 478 2.16
Table 4. Performance comparison of PRESENT, AES, ICEBERG and SEA FPGA implementations.
Algorithm Block Device Max. freq. | Throughput | Total equiv. Efficiency
Size (MHz) (Mbps) Slices (Mbps/Slice)
PRESENT-128 64 Spartan-III XCS400-5 254 508 202 2.51
PRESENT-80, [5] 64 Spartan-IIIE XC3S500 - - 271 -
ICEBERG, [9] 64 Virtex-1I - 1016 631 1.61
SEA 26,7, [8] 126 Virtex-1I XC2V4000 145 156 424 0.368
AES, [10] 128 Spartan-IT XC2S30-6 60 166 522 0.32
AES, [11] 128 | Spartan-III XC3S2000-5 196.1 25,107 17,425 1.44
AES, [11] 128 Spartan-IT XC2S15-6 67 2.2 264 0.01
AES, [12] 128 Spartan-IT XC2V40-6 123 358 1214 0.29
AES, [13] 128 Spartan-III 150 1700 1800 0.9

impact on the max. frequency of the cipher. Switching from
speed grade 4 to speed grade 5 gave us up to 20% max.
frequency increase. There are also different packages for
each device platform with varying pinout count. Those facts
make a fair inter-platform comparison even harder. Hence,
for comparison’s sake we picked only AES implementations
on Spartan devices with speed grade 5 and above. For ICE-
BERG and SEA there are only Virtex-II implementations
available. We also chose PRESENT version with 128 bit key
size for the same reason even though the implementation
figures for PRESENT-80 are more encouraging.

4. CONCLUSION

In this work we have presented a design space exploration
for FPGA implementation of the lightweight block cipher
PRESENT. Though PRESENT was designed with a minimal
hardware footprint in mind, i.e. targeted for low-cost de-
vices such as RFIDs, our results also highlight that PRESENT
is well suited for high-speed and high-throughput applica-
tions. Especially its hardware efficiency, i.e. the throughput
per slice, is noteworthy. Furthermore, interestingly the old-
fashioned Boolean minimization tool espresso resulted in
one case in an implementation that was significantly smaller
than a standard LUT based implementation.

5. REFERENCES

[1] A. Bogdanov, G. Leander, L. R. Knudsen, C. Paar,
A. Poschmann, M. J. Robshaw, Y. Seurin, and
C. Vikkelsoe, “PRESENT - An Ultra-Lightweight
Block Cipher,” in Proceedings of CHES 2007, ser.
LNCS, no. 4727. Springer-Verlag, 2007, pp. 450
— 466. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-74735-231

[2] M. Wang, “ Differential Cryptanalysis of Reduced-
Round PRESENT,” in Proceedings of AFRICACRYPT
2008, ser. LNCS, no. 5023. Springer-Verlag, 2008,
pp. 40 — 49. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-68164-9_4

[3] C. Rolfes, A. Poschmann, G. Leander, and C. Paar,
“Ultra-lightweight implementations for smart devices
- security for 1000 gate equivalents,” in Proceedings of
the 8th Smart Card Research and Advanced Applica-
tion IFIP Conference — CARDIS 2008, ser. LNCS, vol.
5189. Springer-Verlag, 2008, pp. 89-103.

[4] P. Grabher, J. GroBschidl, and D. Page, “Light-weight
instruction set extensions for bit-sliced cryptography,”
in Cryptographic Hardware and Embedded Systems



(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

— CHES 2008. Springer Verlag LNCS 5154,
August 2008, pp. 331-345. [Online]. Available: http:
/Iwww.cs.bris.ac.uk/Publications/Papers/2000890.pdf

X. Guo, Z. Chen, and P. Schaumont, “Energy and Per-
formance Evaluation of an FPGA-Based SoC Platform
with AES and PRESENT Coprocessors,” in Embedded
Computer Systems: Architectures, Modeling, and Sim-
ulation, ser. Lecture Notes in Computer Science, vol.
5114. Springer-Verlag, 2008, pp. 106—-115.

X. Inc., “Spartan-3 FPGA Family Data Sheet,” avail-
able online via http://www.xilinx.com, June 2008.

N.A., “Espresso,” available online via http:
/lembedded.eecs.berkeley.edu/pubs/downloads/
espresso/index.htm, November 1994.

F. Macé, F.-X. Standaert, and J.-J. Quisquater, “FPGA
implementation(s) of a scalable encryption algorithm,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 16,
no. 2, pp. 212-216, 2008.

F-X. Standaert, G. Piret, G. Rouvroy, and J.-J.
Quisquater, “FPGA implementations of the I[CEBERG
block cipher,” Integration, vol. 40, no. 1, pp. 20-27,
2007.

P. Chodowiec and K. Gaj, “Very Compact FPGA Im-
plementation of the AES Algorithm,” in Proceedings
of CHES 2003, 2003, pp. 319-333.

T. Good and M. Benaissa, “AES on FPGA from the
Fastest to the Smallest,” in Proceedings of CHES 2005,
2005, pp. 427-440.

G. Rouvroy, E.-X. Standaert, J.-J. Quisquater, and J.-D.
Legat, “Compact and Efficient Encryption/Decryption
Module for FPGA Implementation of the AES Rijn-
dael Very Well Suited for Small Embedded Applica-
tions,” in ITCC (2), 2004, pp. 583-587.

P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pelle-
grin, and G. Rouvroy, “Implementation of the AES-
128 on Virtex-5 FPGAs,” in AFRICACRYPT, 2008, pp.
16-26.



