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Abstract. It is widely recognized that data security will play a central role in the design of
future IT systems. Many of those IT applications will be realized as embedded systems which
rely heavily on security mechanisms. Examples include security for wireless phones, wireless
computing, pay-TV, and copy protection schemes for audio/video consumer products and
digital cinemas. Note that a large share of those embedded applications will be wireless,
which makes the communication channel especially vulnerable.
All modern security protocols use symmetric-key and public-key algorithms. This contri-
bution surveys several important cryptographic concepts and their relevance to embedded
system applications. We give an overview of the previous work in the area of embedded
systems and cryptography.

1 Introduction

It is widely recognized that data security will play a central role in the design of future IT
systems. Until a few years ago, the PC had been the major driver of the digital economy.
Recently, however, there has been a shift towards IT applications realized as embedded
systems. Many of those applications rely heavily on security mechanisms, including security
for wireless phones, faxes, wireless computing, pay-TV, and copy protection schemes for
audio/video consumer products and digital cinemas. Note that a large share of those
embedded applications will be wireless, which makes the communication channel especially
vulnerable and the need for security even more obvious.
This merging of communications and computation functionality requires data pro-

cessing in real time, and embedded systems have shown to be good solutions for many
applications. Examples of such applications are cellular phones, faxes, pagers, and Internet
solutions such as modems, multi-service network solutions that allow the implementation
of IP telephony, Digital Subscriber Line (DSL) technologies, and some electronic commerce
devices, to name just a few. Since many of these applications will need security functional-
ity in the future, this paper discusses cryptographic algorithms and their implementation
on embedded systems.
In addition to embedded devices, the explosive growth of digital communications also

brings additional security challenges. Millions of electronic transactions are completed each
day, and the rapid growth of eCommerce has made security a vital issue for many con-
sumers. In the future, valuable business opportunities will be realized over the Internet and
megabytes of sensitive data will be transferred and moved over insecure communication
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channels around the world. Thus, it is imperative for the success of modern businesses
that all these transactions be realized in a secure manner. Specifically, unauthorized ac-
cess to information must be prevented, privacy must be protected, and the authenticity of
electronic documents must be established. Cryptography, or the art and science of keeping
messages secure [26], allows us to solve these problems. We believe that cryptographic
engines realized on embedded systems are a promising option for protecting eCommerce
systems.

The implementation of cryptographic systems presents several requirements and chal-
lenges. First, the performance of the algorithms is often crucial. One needs encryption
algorithms to run at the transmission rates of the communication links. Slow running
cryptographic algorithms translate into consumer dissatisfaction and inconvenience. On
the other hand, fast running encryption might mean high product costs since traditionally,
higher speeds were achieved through custom hardware devices.

In addition to performance requirements, guaranteeing security is a formidable chal-
lenge. An encryption algorithm running on a general-purpose computer has only limited
physical security, as the secure storage of keys in memory is difficult on most operating
systems. On the other hand, hardware encryption devices can be securely encapsulated
to prevent attackers from tampering with the system. Thus, custom hardware is the plat-
form of choice for security protocol designers. Hardware solutions, however, come with the
well-known drawback of reduced flexibility and potentially high costs. These drawbacks
are especially prominent in security applications which are designed using new security
protocol paradigms.

Many of the new security protocols decouple the choice of cryptographic algorithm
from the design of the protocol. Users of the protocol negotiate on the choice of algorithm
to use for a particular secure session. The new devices to support these applications, then,
must not only support a single cryptographic algorithm and protocol, but also must be
“algorithm agile,” that is, able to select from a variety of algorithms. For example, IPSec
(the security standard for the Internet) allows to choose out of a list of different symmet-
ric as well asymmetric ciphers. Some of the symmetric-key algorithms are: DES, 3DES,
Blowfish, CAST, IDEA, RC4, RC6, and so on. Thus, software-based systems would seem
to be a better fit because of their flexibility. However, the security engineer is faced with
a difficult choice. Should he/she choose in favor of performance and security, and pay the
price of inflexibility and higher costs? Or should he/she favor flexibility instead? Fortu-
nately, many embedded processors combine the flexibility of software on general-purpose
computers with the near-hardware speed and better physical security than general-purpose
computers.

Embedded processors are already an integral part of many communications devices
and their importance will continue to increase. If we combine this with their flexibility to
be programmed and their ability to perform arithmetic operations at moderate speeds,
it is easy to see that they are a very promising platform to implement cryptographic
algorithms.

This paper focuses on the basics of cryptography and the implementation of crypto-
graphic applications on embedded systems. In Section 2, we introduce the general theory
and concepts of symmetric-key and public-key cryptography as well as the operations
which are most commonly performed. We will show that public-key operations are very
computationally intensive and therefore require platforms which have strong arithmetic ca-
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pabilities. In Section 3, a survey of previous cryptographic implementations on embedded
systems is presented, as well as some of the characteristics of the proposed algorithms. We
give an overview of implementations of symmetric-key and public-key algorithms. Finally,
we end this contribution with some conclusions.

2 Cryptography: Public-key and Symmetric-key Algorithms

2.1 What We Can Do with Cryptography

Cryptography involves the study of mathematical techniques that allow the practitioner
to achieve or provide the following objectives or services [22, 27]:

– Confidentiality is a service used to keep the content of information accessible to only
those authorized to have it. This service includes both protection of all user data
transmitted between two points over a period of time as well as protection of traffic
flow from analysis.

– Integrity is a service that requires that computer system assets and transmitted in-
formation be capable of modification only by authorized users. Modification includes
writing, changing, changing the status, deleting, creating, and the delaying or replaying
of transmitted messages. It is important to point out that integrity relates to active
attacks and therefore, it is concerned with detection rather than prevention. Moreover,
integrity can be provided with or without recovery, the first option being the more
attractive alternative.

– Authentication is a service that is concerned with assuring that the origin of a message
is correctly identified. That is, information delivered over a channel should be authen-
ticated as to the origin, date of origin, data content, time sent, etc. For these reasons
this service is subdivided into two major classes: entity authentication and data origin
authentication. Notice that the second class of authentication implicitly provides data
integrity.

– Non-repudiation is a service which prevents both the sender and the receiver of a
transmission from denying previous commitments or actions.

These security services are provided by using cryptographic algorithms. There are two
major classes of algorithms in cryptography: Private-key or Symmetric-key algorithms
and Public-key algorithms. The next two sections will describe them in detail.

2.2 Symmetric-key Algorithms

Private-key or Symmetric-key algorithms are algorithms where the encryption and de-
cryption key is the same, or where the decryption key can easily be calculated from the
encryption key and vice versa. The main function of these algorithms, which are also called
secret-key algorithms, is encryption of data, often at high speeds. Private-key algorithms
require the sender and the receiver to agree on the key prior to the communication taking
place. The security of private-key algorithms rests in the key; divulging the key means
that anyone can encrypt and decrypt messages. Therefore, as long as the communication
needs to remain secret, the key must remain secret.
There are two types of symmetric-key algorithms which are commonly distinguished:

block ciphers and stream ciphers [26]. Block ciphers are encryption schemes in which the
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message is broken into strings (called blocks) of fixed length and encrypted one block
at a time. Examples include the Data Encryption Standard (DES) [11], the International
Encryption Standard (IDEA) [19, 21], and the Advanced Encryption Standard (AES) [29].
Note that, due to its short block size and key length, DES expired as a US standard in
1998, and that the National Institute of Standards (NIST) selected Rijndael algorithm as
the AES in October 2000. AES has a minimum block size of 128 bits and the ability to
support keys of 128, 192 and 256 bits in length.

Stream ciphers operate on a single bit of plaintext at a time. In some sense, they are
block ciphers having block length equal to one. They are useful because the encryption
transformation can change for each symbol of the message being encrypted. In particular,
they are useful in situations where transmission errors are highly probable because they
do not have error propagation. In addition, they can be used when the data must be
processed one symbol at a time because of lack of equipment memory or limited buffering.

It is important to point out that the trend in modern symmetric-key cipher design has
been to optimize the algorithms for efficient software implementation in modern proces-
sors. This is evident if one looks at the performance of the AES on different platforms.
The internal AES operations can be broken down into 8-bit operations, which is impor-
tant because many cryptographic applications run on smart cards. Furthermore, one can
combine certain steps to get a suitable performance in the case of 32-bit platforms.

As a final remark, notice that one of the major issues with symmetric-key systems is
the need to find an efficient method to agree on and exchange the secret keys securely [22].
This is known as the key distribution problem. In 1977, Diffie and Hellman [9] proposed
a new concept that would revolutionize cryptography as it was known at the time. This
new concept was called public-key cryptography.

2.3 Public-key Algorithms

Public-key (PK) cryptography is based on the idea of separating the key used to encrypt
a message from the one used to decrypt it. Anyone that wants to send a message to party
A can encrypt that message using A’s public key but only A can decrypt the message
using her private key. In implementing a public-key cryptosystem, it is understood that
A’s private key should be kept secret at all times. Furthermore, even though A’s public
key is publicly available to everyone, including A’s adversaries, it is impossible for anyone,
except A, to derive the private key (or at least to do so in any reasonable amount of time).

In general, one can divide practical public-key algorithms into three families:

– Algorithms based on the integer factorization problem: given a positive integer n, find
its prime factorization. RSA [25], the most widely used public-key encryption algo-
rithm, is based on the difficulty of solving this problem.

– Algorithms based on the discrete logarithm problem: given α and β find x such that
β = αx mod p. The Diffie-Hellman key exchange protocol is based on this problem as
well as many other protocols, including the Digital Signature Algorithm (DSA).

– Algorithms based on Elliptic Curves. Elliptic curve cryptosystems are the most recent
family of practical public-key algorithms, but are rapidly gaining acceptance. Due to
their reduced processing needs, elliptic curves are especially attractive for embedded
applications.



Cryptography in Embedded Systems: An Overview 5

Despite the differences between these mathematical problems, all three algorithm families
have something in common: they all perform complex operations on very large numbers,
typically 1024–2048 bits in length for the RSA and discrete logarithm systems or 160–
256 bits in length for the elliptic curve systems. Since elliptic curves are somewhat less
computationally intensive than the other two algorithm families, they seem especially
attractive for embedded applications.
The most common operation performed in public-key schemes is modular exponentia-

tion, i.e., the operation xe mod n. Performing such an exponentiation with, e.g., 1024-bit
long operands is extremely computationally intensive. Interestingly enough, modular expo-
nentiation with long numbers requires arithmetic which is very similar to that performed
in signal processing applications [18], namely integer multiplication.
Public-key cryptosystems solve in a very elegant way the key distribution problem of

symmetric-key schemes. However, PK systems have a major disadvantage when compared
to private-key schemes. As stated above, public-key algorithms are very arithmetic inten-
sive and — if not properly implemented or if the underlying processor has a poor integer
arithmetic performance — this can lead to a poor system performance. Even when prop-
erly implemented, all PK schemes proposed to date are several orders of magnitude slower
than the best known private-key schemes. Hence, in practice, cryptographic systems are a
mixture of symmetric-key and public-key cryptosystems. Usually, a public-key algorithm
is chosen for key establishment and authentication through digital signatures, and then a
symmetric-key algorithm is chosen to encrypt the communications and the data transfer,
achieving in this way high throughput rates.

3 Embedded Systems and Cryptography

The field of efficient algorithms for the implementation of cryptographic schemes is a very
active one (for an overview on current techniques see [22, Chapter 14]). However, essentially
all cryptographic research is being conducted independent of hardware platforms, and little
research focuses on algorithm optimization for specific processors.
In the following, we will review previous implementations of symmetric-key and public-

key algorithms on embedded systems. We will also summarize two of the fastest software
implementations of PK schemes on general purpose computers. This will give the reader
an idea as to the kind of speeds that are to be expected on general purpose machines, and
which speeds can be expected in embedded system applications.

3.1 Symmetric-key Algorithms on DSPs

In [31], the authors investigated how well high-end DSPs are suited for the implementation
of the final five AES candidate algorithms. In particular, the implementations are on a 200
MHz TMS320C6201 which performs up to 1600 million instructions per second (MIPS)
and provides thirty two 32-bit registers and eight independent functional units. In what
follows, we briefly describe the way [31] chose to code the Rijndael algorithm because there
are several implementation options.
In [7], the authors of Rijndael proposed a way of combining the different steps of the

round transformation into a single set of table lookups. Thus, the implementation in [31]
uses 4 tables with 256 4-byte word entries. In addition to the optimizations described
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above, a second version of code in which data blocks can be processed in parallel was
implemented. With parallel processing, the encryption and the decryption functions can
operate on more than one block at a time using the same key. This allows better utilization
of the DSP’s functional units which leads to better performance. With parallel processing,
however, the speedups may only be exploited in modes of operations which do not require
feedback of the encrypted data, such as Electronic Code-Book (ECB) or Counter Mode.
When operating in feedback modes such as Ciphertext Feedback mode, the ciphertext of
one block must be available before the next block can be encrypted. The authors in [31]
noticed that the Rijndael code can be optimized by the tools very efficiently. Thus, no
performance advantage is obtained by parallel processing, which results in the same speed
for single-block and multi-block modes. Table 1 summarizes the performance of Rijndael
on the TMS320C6201.

Table 1. Performance results for the Rijndael algorithm on the TMS320C6201 [31]

DSP DSP Pentium-Pro
multi-block mode single-block mode DSP multi-block

@ 200MHz @ 200MHz @ 200MHz mode/Pentium
cycles Mbit/sec cycles Mbit/sec Mbit/sec

Rijndeal encryption 228 112.3 228 112.3 70.5 [12] 1.6
decryption 269 95.2 269 95.2 70.5 [12] 1.4

All the timings are obtained from a C implementation using the compiler version 4.0 alpha

3.2 Public-key Algorithms on Embedded Systems

In [3], the Barret modular reduction method is introduced. The author implemented RSA
on the TI TMS32010 DSP. A 512-bit RSA exponentiation took on the average 2.6 seconds
running at the DSP’s maximum speed of 20 MHz. Reference [10] describes the imple-
mentation of a cryptographic library designed for the Motorola DSP56000 which was
clocked at 20 MHz. The authors focused on the integration of modular reduction and
multi-precision multiplication according to Montgomery’s method [18, 23]. This RSA im-
plementation achieved a data rate of 11.6 Kbits/s for a 512-bit exponentiation using the
Chinese Remainder Theorem (CRT) and 4.6 Kbits/s without using it.
The authors in [15] described an ECDSA implementation over GF (p) on the M16C, a

16-bit 10 MHz microcomputer. Reference [15] proposes the use of a field of prime charac-
teristic p = e2c± 1, where e is an integer within the machine word size and c is a multiple
of the machine word size. This choice of field allows to implement multiplication in GF (p)
in a small amount of memory. Notice that [15] uses a randomly generated curve with the
a coefficient of the elliptic curve equal to p − 3. This reduces the number of operations
needed for an EC point doubling. They also modify the point addition algorithm in [24] to
reduce the number of temporary variables from 4 to 2. This contribution uses a 31-entry
table of precomputed points to generate an ECDSA signature in 150 msec. On the other
hand, scalar multiplication of a random point takes 480 msec and ECDSA verification
630 msec. The whole implementation occupied 4 Kbyte of code/data space.
In [16], two new methods for implementing public-key cryptography algorithms on the

200 MHz TI TMS320C6201 DSP are proposed. The first method is a modified imple-
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mentation of the Montgomery variant known as the Finely Integrated Operand Scanning
(FIOS) algorithm [18] suitable for pipelining. The second approach suggests a method
for reducing the number of multiplications and additions used to compute 2mP , for P
a point on the elliptic curve and m some integer. The final code implemented RSA and
DSA combined with the k-ary method for exponentiation, and ECDSA combined with the
improved method for multiple point doublings, sliding window exponentiation, and signed
binary exponent recoding. The total instruction code was 41.1 Kbytes. They achieved
11.7 msec for a 1024-bit RSA signature using the CRT (1.2 msec for verification assuming
a 17-bit exponent) and 1.67 msec for a 192-bit ECDSA signature over GF (p) (6.28 msec
for verification and 4.64 msec for general point multiplication).

Recently, two papers have introduced fast implementations on 8-bit processors over
Optimal Extension Fields (OEFs), originally introduced in [1]. Reference [5] reports on an
ECC implementation over the field GF (pm) with p = 216−165,m = 10, and f(x) = x10−2
is the irreducible polynomial. The authors use the column major multiplication method
for field multiplication and squaring, for the specific case in which f(x) is a binomial.
They achieve better performance than when using Karatsuba multiplication because in
this processor additions and multiplications take the same number of cycles. Modular
reduction is done through repeated use of the division step instruction. For inversion, they
use the variant of the Itoh and Tsujii Algorithm [17] proposed in [2]. For EC arithmetic they
combine the mixed coordinate system methods of [6] and [20]. These combined methods
allow them to achieve 122 msec for a 160-bit point multiplication on the CalmRISC with
MAC2424 math coprocessor running at 20 MHz. The second paper [32] describes a smart
card implementation over the field GF ((28 − 17)17) without the use of a coprocessor.

Reference [32] focuses on the implementation of ECC on the 8051 family of micro-
controllers, popular in smart cards. The authors compare three types of fields: binary
fields GF (2k), composite fields GF ((2n)m), and OEFs. Based on multiplication timings,
the authors conclude that OEFs are particularly well suited for this architecture. A key
idea of this contribution is to allow each of the 16 most significant coefficients resulting
from a polynomial multiplication to accumulate over three 8-bit words instead of reducing
modulo p = 28−17 after each 8-bit by 8-bit multiplication. Fast field multiplication allows
the implementation to have relatively fast inversion operations following the method pro-
posed in [2]. This, in turn, allows for the use of affine coordinates for point representation.
Finally, the authors combine the methods above with a table of 9 precomputed points to
achieve 1.95 sec for a 134-bit fixed point multiplication and 8.37 sec for a general point
multiplication using the binary method of exponentiation.

We end this section by summarizing the contributions in [13] and [30]. In [13], an
ECC implementation over prime fields on the 16-bit TI MSP430x33x family of low-cost
microcontrollers is described. The authors in [13] show that it is possible to implement
EC cryptosystems in highly constrained embedded systems and still obtain acceptable
performance at low cost. They modified the EC point addition and doubling formulae
to reduce the number of intermediate variables while at the same time allowing for flex-
ibility. In addition, [13] use Generalized-Mersenne primes to implement the arithmetic
in the underlying field, taking advantage of the special form of the moduli to minimize
the number of precomputations needed to implement the underlying arithmetic. These
ideas are combined to achieve an EC scalar point multiplication in 3.4 seconds without
any stored/precomputed values and the processor clocked at 1 MHz. The authors in [30]
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implemented EC over binary fields on a Motorola Dragonball CPU which is used on the
popular Palm Personal Digital Assistants (PDAs). The Dragonball offers 16-bit and 32-bit
operations and runs at 16 MHz. Using Koblitz curves over GF (2163), [30] shows that it is
possible to perform an ECDSA signature generation operation in less than 0.9 sec. while a
verification operation requires less than 2.4 sec. The authors point out that Koblitz curves
over fieldsGF (2163) provide about the same level of security as RSA with a 1024-bit length,
while at the same time providing acceptable performance which is not possible to achieve
by using RSA-based systems since the integer multiplier in the Dragonball processor is
very slow.

3.3 Fast Software Implementations

The purpose of this subsection is to give timings of software implementations of public-key
algorithms, in order to get a better appreciation for the timings of similar implementations
on embedded processors.
The primary focus of [4] and [14] is to describe fast software implementations of elliptic

curve cryptosystems over binary and prime fields on a Pentium II 400 MHz-based PC. The
implementations used NIST recommended curves according to FIPS 186-2 [28]. The best
timings from [4] and [14] are presented in Table 2.

Table 2. Timings for elliptic curve operations [4, 14]. All times in ms.

Type of Operation ECDSA GF (2163) ECDSA GF (p), p = P − 192 from FIPS 186-2

signature 1.68 0.68

verification 4.97 2.59

general point multiplication 1.68 0.68

Reference [8] describes a fast software implementation of the elliptic curve version of
DSA (known as ECDSA). In addition, the paper provides speed comparisons between
different public-key schemes. These types of comparisons are scarce in the literature. The
authors implemented RSA, DSA, and ECDSA, for both GF (2n) and GF (p), on a Pentium-
Pro 200 MHz-based PC running Windows NT 4.0 and using MSVC 4.2 and maximal
optimization. RSA and DSA used a 1024-bit long modulus whereas elliptic curve operations
used a 191-bit long modulus instead. Notice that elliptic curve cryptosystems with 191-bit
arithmetic is slightly stronger than RSA with 1024-bit operations. Table 3 presents the
timings for the signature operation using the four algorithms discussed.

Table 3. Comparison of ECDSA, DSA, and RSA signature operations [8]. All times in ms.

Type of Operation ECDSA GF (2n) ECDSA GF (p) RSA DSA

signature 11.3 6.3 43.3 23.6

verification 60 26 0.65 28.3

general point multiplication 50 21.1 – –
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4 Conclusions

We have introduced the basic concepts, characteristics, and goals of various cryptographic
algorithms. We have shown how embedded systems are essential parts of most commu-
nications systems and how this makes them especially attractive as a potential platform
to implement cryptographic algorithms. Furthermore, although a challenging task, pre-
vious implementations of arithmetic intensive cryptographic algorithms seem to indicate
that they can achieve acceptable performance on embedded processors and constrained
platforms. Thus, it is our view that designing and implementing efficient cryptographic
algorithms on embedded systems will continue to be an active research area.
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