
Enabling Full-Size Public-Key Algorithms on 8-bit Sensor

Nodes

Leif Uhsadel, Axel Poschmann, and Christof Paar

Horst Görtz Institute for IT Security
Communication Security Group (COSY)

Ruhr-Universität Bochum, Germany
Universitätsstrasse 150

44780 Bochum, Germany
{uhsadel, poschmann, cpaar}@crypto.rub.de

www.crypto.rub.de

Abstract. In this article we present the fastest known implementation of a modular multi-
plication for a 160-bit standard compliant elliptic curve (secp160r1) for 8-bit micro controller
which are typically used in WSNs. The major part (77%) of the processing time for an elliptic
curve operation such as ECDSA or EC Diffie-Hellman is spent on modular multiplication. We
present an optimized arithmetic algorithm which significantly speed up ECC schemes. The
reduced processing time also yields a significantly lower energy consumption of ECC schemes.
With our implementation results we can show that a 160-bit modular multiplication can be
performed in 0.39 ms on an 8-bit AVR processor clocked at 7.37 MHz. This brings the vision
of asymmetric cryptography in the field of WSNs with all its benefits for key-distribution and
authentication a step closer to reality.

Keywords: wireless sensor network, elliptic curve cryptography, secp160r1, 8-bit micro con-
troller, Micaz

1 Introduction

The terms ubiquitous and pervasive computing designate the penetration of our everyday life with
intelligent devices. Wireless sensor networks (WSN) will play a fundamental role to enable this
vision. WSNs consist of many tiny and smart devices, referred to as nodes, which typically combine
an 8-bit processor with memory, sensors, radio unit and power supply. The foreseen applications
for WSNs range from medical scenarios to agricultural, military and environmental monitoring.
Since many data may be very critical (e.g., for the health of human beings in medical scenarios or
safety critical monitoring) security mechanisms are required to ensure integrity, confidentiality and
authenticity of the data.

WSNs face major security problems because the communication is wirelessly and the devices
are often easy to access. Therefore, an adversary can easily eavesdrop on communication or simply
steal a node. Since sensor nodes are usually not tamper-resistant, an adversary can often read out
any content that is stored on the node. Furthermore, the devices are very constrained in terms of
memory, computing power, and energy supply. Since battery powered devices have a limited amount
of energy, the major metric in the area of WSNs is energy consumption. The lifetime of a WSN is



2 Leif Uhsadel, Axel Poschmann, and Christof Paar

directly proportional to its energy efficiency, i.e., the less energy is consumed by applications the
longer the batteries will last.

Symmetric algorithms are generally preferable to asymmetric algorithms in the field of WSNs
because they are more efficient in terms of energy consumption and memory requirements. However,
when symmetric algorithms are used, two problems arise: (1) key distribution and (2) number of
stored keys. When individual keys are used in a WSN with n nodes, each node has to store (n− 1)
keys. This has good resiliency properties but obviously scales badly and is especially unsuitable for
large WSNs. Moreover, perfect forward secrecy is not given after a node’s key have been compro-
mised. When one single symmetric key is used, memory requirement is greatly reduced, but at the
same time this is not resilient anymore. To cope with this problem many probabilistic key distri-
bution schemes for symmetric algorithms have been proposed [EG02, CPS03, DDHV]. In general
these approaches either need pre-distributed keys, which means a higher configuration effort before
deployment, or they produce much traffic, which results in higher energy consumption. Therefore,
asymmetric algorithms are very valuable for key establishment and authentication in WSN.

Asymmetric cryptography has long seen as being too demanding for constrained devices such as
sensor nodes with an 8-bit micro controller. However, there exist several protocols for asymmetric
cryptographic algorithms for WSNs. In [WKC+04] Watro et al. describe public-key based protocols
for WSNs. In particular, they present authentication and key-agreement protocols based on RSA.
The so-called TinyPK was implemented in NesC for MicaZ 8-bit micro controller. However, one RSA
exponentiation with a 1024-bit key needs 14.5 seconds, which is arguably not acceptable in many
applications. RSA needs much longer key lengths compared to elliptic curve cryptography to achieve
the same security level (1024 bit vs. 160-bit) [Res00]. Considering the limited amount of memory,
computing power and energy of a typical 8-bit sensor node, it seems that ECC is a much better
choice for public-key cryptography for WSN rather than RSA. Since TinyPK is based on the more
demanding RSA algorithm and was implemented in NesC, it is not surprising that this is more than
one order of magnitude slower than the fastest known implementation of a point multiplication for
ECC in assembly. In [GPW+04] Gura et al. describe a point multiplication on a 160-bit standard
curve within 0.81 seconds. The majority (77%) of the clock cycles was required by the modular
multiplication. However, the source code of this implementation is not publicly available, it is
rather intellectual property of Sun Microsystems. Therefore, these impressive results are not usable
for the scientific community. Alternatively there is the TinyECC implementation [LN06], which
may be used free of charge. TinyECC is a free software package for TinyOS that supports all SECG
recommended 128-bit, 160-bit and 192-bit elliptic curve domain parameters. However, it is slower
and needs more memory than the equivalent of SUN Microsystems. Therefore, our goal was to
implement a prime field arithmetic for an ECC scheme for 8-bit micro controller, which is open
source and at the same time faster than the aforementioned implementation of SUN.

The remainder of this work is organized as follows: In Section 2 we give an introduction to
elliptic curve cryptography and constraints of the target devices. Subsequently, in Section 3 our
implementation of the modular multiplication for a 160-bit standard elliptic curve is described.
The results of our implementation are presented in Section 4. Finally, this paper is concluded in
Section 5.



Enabling Full-Size Public-Key Algorithms on 8-bit Sensor Nodes 3

2 Preliminary Assumptions and Introduction to Elliptic Curve

Cryptography

In this section, we first state the constraints of the target micro controller. Subsequently we introduce
the mathematical background of ECC. Finally, we state the implementation issues that arise when
trying to implement ECC for constrained devices.

2.1 Constrained Devices

For the envisioned applications of WSNs, up to tens of thousands of smart, but battery powered
devices are required, which communicate wirelessly. In order to lower costs, these devices will be very
constrained in terms of memory capacity, computing power and energy supply. Nowadays, the de-
facto standard sensor nodes for researchers are the so-called Mica motes [xbo,HC02]. They comprise
an 8-bit RISC ATMEL AVR ATmega128L [Atm] micro controller, 4 KB configuration EEPROM
memory, 512 KB data Flash memory, 128 KB program Flash memory, various sensors, ZigBee radio
interface, and two standard AA batteries. Ideally these batteries should last for several months up
to years. Therefore, a small power consumption is a crucial requirement for any application running
on these nodes. Sending and receiving of messages is by far the most energy consuming task on
the nodes [HSW+00], therefore the traffic should be minimized wherever possible. Furthermore,
the energy consumption of an application is mainly determined by its execution time. Therefore, a
rule-of-thumb is: the shorter the processing time of an algorithm, the lower its energy consumption.

2.2 Introduction to Elliptic Curve Cryptography

Compared with symmetric algorithms the asymmetric algorithms work very slow. In particular on
low-power processors they are felt as not practical and are used only rarely or not at all. For this
purpose special algorithms were developed, but they have to be cryptanalyzed and shown to be
secure, which takes a long time, before they are suitable for protecting sensitive data or application.
Elliptic curves represent a special case. The advantage of the Elliptic Curve Cryptography (ECC)
is that on one hand it is meanwhile quite well investigated and thus considered secure while on
the other hand just a very short bit length is needed as compared to other asymmetric systems. In
order to reach a security level, which is equivalent to an RSA key with a length of 1024-Bit, already
160 bits are sufficient with elliptic curves [Res00]. This is a ratio of 6.4 and will significantly reduce
the consumed energy for key establishment.

Let E be an elliptic curve defined over a field K as shown in figure 1, then a set of points can
be created by a chord-and-tangent rule (extended addition). If P and Q are two different points,
which are part of the set, that intersect the elliptic curve in a straight line, there will be a third
intersection on the straight line with the curve. The reflection on the x axis of the latter is called
R and represents the sum of P and Q. Doubling works the same, but the straight line is given
by the tangent of the curve in the according point. This set of points defined by the extended
addition extended by the point ∞ forms an Abelian group. P +P is referred to as 2P . Accordingly
is P + ..+P = kP . For every point P exist a point Q with P = kQ, if P is not the identity and the
order of the elliptic curve is prime. Finding the appropriate k for a given set (Q, P ) is considered
to be hard and called the elliptic curve discrete logarithm problem (ECDLP). Most ECC protocols
rely on the ECDLP.



4 Leif Uhsadel, Axel Poschmann, and Christof Paar

P

Q

R’

R

Fig. 1. Elliptic Curve, Parameters: a=-7 and b=11

There are various algorithms for the extended addition on an elliptic curve for different coor-
dinates and different underlying fields. They can be optimized according to the used protocol and
hardware. A good overview is given by [HMV04] and [Bro01]. Regardless which algorithm is used,
they are all based on the arithmetic of the underlying field. Especially the multiplication in the
field comes at great cost in time and energy. An efficient field arithmetic is therefore the base for
an efficient implementation of an elliptic curve cryptographic system.

As prime fields are potential to be implemented in software with good performance, we rely in
the following on elliptic curves of the form

E/K : y2 = x3 + ax + b, char(K) 6= 2, 3 (1)

2.3 Elliptic Curve Cryptography Implementation Issues

The basis for an efficient cryptographic system based on elliptic curves is a very efficient prime
field arithmetic. As shown in Figure 2, a cryptographic system based on elliptic curves can be
divided into three layers. The highest level actually represents the application layer. Protocols
implemented here are for example ECDSA [HMV04] or EC ElGamal [HMV04]. Optimizations in
this layer vary strongly, depending on the application (signature, coding etc.) and have to be partly
or completely redone for each application. The underlying layer is the arithmetic of the elliptic
curve. Most protocols are based on the multiplication of a point on the elliptic curve with an integer
(k ∗ P ). However, optimizations at this level usually also strongly depend on the protocol layer.
Optimizations in the underlying prime field arithmetics layer will always improve the performance
of the whole ECC-System, because they are layer independent. More than 77% of the computing
time can be applied here. Therefore, a very efficient prime field arithmetic is crucial for ECC based
systems on constrained devices and time critical systems.



Enabling Full-Size Public-Key Algorithms on 8-bit Sensor Nodes 5

Protocol

Prime field arithmetic

Curve arithmetic

Fig. 2. Three Layers of an ECC-system

3 Implementation of Modular Multiplication

In this section, we first state criteria for an efficient implementation of an ECC system. Subsequently
we will present details of our implementation of the modular multiplication, on which ECC system
are based on.

3.1 Criteria for an Efficient ECC Implementation

Since optimizations in the prime fields arithmetic, contrary to other optimizations, will always
improve the performance of the ECC system, the main attention goes here. Further optimization
should be done depending on the application and the selected EC domain parameters. Prime field
arithmetic should provide the operations multiply, add, subtract, halve and reduction. Operations
with the most potential for optimization are the multiplication and the reduction. Starting point for
the implementation is to choose a curve. For security reasons it should be a standardized curve with
at least 160 bit in length. To keep computations fast the bit length should be as short as possible.
The curve ”secp160r1” standardized by Standards for Efficient Cryptography (SEC2) [Cer00] was
chosen for our implementation. It has two advantages that can be used to speed up prime field
arithmetic reduction and to speed up curve arithmetic double and add. Because its underlying
prime field is based on a pseudo Mersenne prime the reduction in the prime field can be done by
several shifts and adds [Sol99] which is much faster than any other known algorithm on constrained
devices. The curve parameter a = −3 can be used to reduce the effort of point doubling and point
addition when using Jacobian projective coordinates [HMV04].

To adapt the algorithms in the best possible way to the hardware the prime field arithmetic
is completely implemented in assembly. As mentioned before the reduction can be implemented
very efficiently if pseudo Mersenne primes are used. Addition and subtraction can be done without
special optimization. The highest cost of computation lies in the 160-bit multiplication of the
prime field. When choosing an algorithm for this multiplication it is important to consider the
hardwares characteristic, such as processor word-size and number of general purpose registers. The
ATmega128L is able to perform an 8-bit multiplication in two cycles. Loading one 8-bit word from
SRAM to registers also requires two cycles. Basically two different approaches are possible:

1. reduce the number of multiplication or



6 Leif Uhsadel, Axel Poschmann, and Christof Paar

2. reduce SRAM usage.

The first attempt would be to implement Karatzuba [MVPV96] and the second some kind of
improved schoolbook algorithm. The hybrid multiplication [GPW+04] is a memory optimized variant
of the schoolbook algorithm. A special characteristic of the algorithm is that the computational cost
rises linearly with smaller numbers of registers and processor word size. It also is much easier to
implement than Karatzuba and hence much easier to port to different platforms. For these reasons
the hybrid multiplication was chosen.

When doing a multiplication using the schoolbook algorithm the multiplication is divided in
several parts that are accumulated to get the final result. The summands can be sorted in two ways
before the addition: adding them from left-to-right or right-to-left1 it is called row wise multiplica-
tion, see Figure 3(a). Sorting them by bit length is called column wise multiplication, see Figure 3(b).

(a) Row Wise Multiplication (b) Column Wise Multiplication

Fig. 3. Row Wise and Column Wise Multiplication

The hybrid multiplication algorithm [GPW+04] combines both methods: the summands that are
used in the column wise way are calculated by using the row wise method, see Figure 4.

The number of rows per column is called column width (d). According to [GPW+04] the optimal
column width is:

d = max{i | 1 ≤ i ≥ n, r ≥ 3i + ⌈log2 (n/i)/k⌉}, (2)

where n is the operand size, r are the available registers and k is the bitlength.

3.2 Implementation of the Modular Multiplication

According to Formula 2 the optimal d is 10 using all registers of the micro controller. In our first
approach this parameter was used. The implementation benchmark showed that the implementation

1 This is what is taught in school when learning the multiplication the first time - probably giving the
algorithm its name



Enabling Full-Size Public-Key Algorithms on 8-bit Sensor Nodes 7

Fig. 4. 160-bit Hybrid Multiplication on ATMega128L with five Multiplications per Row

was about 50% slower than the benchmarks of SUN Microsystems in [GPW+04]. This overhead
was mainly caused by handling carry bits. Let’s have a look at the theoretic minimum effort of the
algorithm. The core of the row wise part is the elemental 8 bit multiplication of the CPU followed by
two additions to add the product to an intermediate result. These three operations are performed
in the inner loop and will be referenced as the elementary instruction block in the remainder as
illustrated in Figure 5(a). When using 160-bit operands this is done exact 400 times regardless of
d. One multiplication and two additions equal 4 cycles. This means 1600 cycles in total plus the
effort to get the operands from SRAM and write them back. This effort depends on the parameter
d which depends on the machine’s hardware. For the theoretic best d (d = 10) on our target device
the memory load and store effort would be 80 data loads and 40 stores consuming 240 cycles in
total. For d = 5 the data load effort would double to 160 cycles while data store effort remains at
40 consuming 400 cycles in total. In summary, the theoretic optimum is 1840 cycles for d equal to
10 or 2000 cycles for d equal to 5. However, our first implementation needed about 4500 cycles,
even though we used the -theoretical- optimal column width d of size 10.

We found that surprisingly, the major part of the overhead was caused by carry handling rather
than handling pointers or other arbitrary effort. The elementary instruction block is one 8-bit
multiplication followed by two additions as mentioned before. Since the additions are targeted to
an intermediate result which is in general not zero the addition produces a carry bit in the general
case. When the next iteration starts the elementary 8-bit multiplication will overwrite the carry
flag in the CPU. Hence the carry bit has to be stored and restored in each elementary instruction
block, which would result, in at least two additional cycles per elementary instruction block or an
overhead of at least 66.66% only for carry handling! Note that at the end of each row and also at
the end of each column additional carry handling is required. Even if an efficient carry store and
restore is available, the operation ”add with carry” would add the carry to the wrong register, as
can be seen in Figure 5(b). The best solution we found that solves both problems requires three



8 Leif Uhsadel, Axel Poschmann, and Christof Paar

additional cycles per iteration of each elementary instruction block. Compared to the four cycles
of the elementary instruction block, this is an overhead of 75%. Any other possible solution found
needed more spare registers.

Elementary Instruction Block:
1 x 8-bit multiplication
2 x 8-bit additions

ai * bi

(a) Elementary Instruction Block

ai+1 * bi+1

ai * bi

ad
d1

ad
d2

ad
d3

ad
d4

ca
rr

y1

ca
rr

y2

ca
rr

y3

The carrys from 
two consecutive 
elementary 
operation blocks 
overleap here.
Carry2 goes to 
wrong register.

Performing single elementary 
operation blocks

(b) Column Wise

Fig. 5. Carry Handling Problems with Elementary Instruction Blocks

In our second implementation the column width d was chosen equal to 5. Note that in this case a
160-bit multiplication consists of 16 columns, each of them is comprised of five rows. Five elementary
instruction blocks are required to calculate one row. Furthermore, by halving the column width d
the number of memory loads is doubled. In other words, we trade at least 80 additional cycles for
the sake of more spare registers. Storing and restoring the carry bit after each 8-bit multiplication is
not efficient. Several different solutions are possible, but discussing them all would exceed the frame
of this work. A solution in which the carry bit can be handled by the ”add with carry” command
is required. In the next subsections we will emphasize the overhead produced by carry handling
within one row and within one column. Finally we will summarize the carry handling costs.

Calculating a Row: The number of consecutive elementary instruction blocks performed in the
row wise part is set by the parameter d. In this case five iterations are done in a row. The spare
registers can be used as a buffer to safe the five 16-bit products of the five 8-bit multiplications, see
Figure 6. After the five multiplications are executed and buffered, eleven additions follow, which
are performed in the order shown by the numbers in Figure 6. Addition number six is represented
by the -carryadd- arrow. It represents a normal ”add with carry” instruction, that adds a zero to
the register holding the high significant byte of the result of an 8-bit multiplication, thus adding
the carry bit. We call this carry add ”secure” because it cannot produce another carry. This is due
to the fact that the maximal product 0xFF ∗ 0xFF = 0xFE01. Hence, adding a carry bit to the



Enabling Full-Size Public-Key Algorithms on 8-bit Sensor Nodes 9

high significant byte of 0xFE01 results in 0xFF01 and does not produce another carry bit. This
serialization/pipelining of elementary instruction blocks reduces the carry handling within a row
to four move instructions (the last multiplication does not need to be buffered) and one addition
instruction or, respectively, one clock cycle per elementary instruction block. Note that the previous
approach required three cycles per elementary instruction block for carry handling. In other words
the overhead is reduced from 75% in the first approach to now 25%. However, again additional
handling is needed for carry bits occurring at the end of each row and column.

ai * bj+4

ai * bj+3

ai * bj+1

5 911 8 2 7 1

ai * bj

3

ai * bj+2

10 4

carryadd

10 spare registers to 
buffer the results of the 
five 8-bit 
multiplications.

Additions are done in 
an order that “add with 
carry“ can be used.

 16-bit move

8-bit add with carry

8-bit add without carry

carryadd

8-bit word in the range 0x00 .. 0xFE

8-bit word in the range 0x00 .. 0xFF

16-bit product of a multiplication

carry buffer

Fig. 6. Carry Handling in one Row

Calculating a Column: Recall that a column is comprised of five rows, i.e. five rows have to be
processed to calculate a column. The last addition done in a row produces a carry bit which has to
be processed in one of the upcoming rows, as we will see below. Figure 6 shows the carry handling
within columns. A white box denotes an 8-bit register holding a value smaller than 0xFE, i.e. a
”secure” carry add is possible with this register, whereas a gray box denotes an 8-bit register with
an arbitrary value. As mentioned before, the carry bit which occurs at the end of each row needs
to be processed later on, therefore it is buffered either in ”carry buffer 1” or in ”carry buffer 2”.
The correct position where this carry bit has to be added is displayed by the position of the carry
buffer holding it. Figure 6 shows furthermore, that in two successive rows the latter one has no
register in which the carry bit of the former could be ”securely” added. In the subsequent row this
is possible, hence a second carry buffer is required. The two buffers are used alternating to safe the
carry bits, which occur after the calculation of each row. Therefore, two additional cycles overhead
are required for carry handling for each column.

The carry bit occurring at the end of the column is stored in a third buffer. Since more than one
row may be calculated using the same accumulator bytes, more than one carry bit is accumulated
in the third carry buffer. If the next column starts with new accumulator bytes the carry buffer has
to be processed. Figure 7 shows the correct position. In this case two additions are done, whereby



10 Leif Uhsadel, Axel Poschmann, and Christof Paar

the latter is ”secure”. This is because the carry buffer may exceed the value 0x01 making a single
”secure” carry add impossible. Therefore, three additional cycles for carry handling are required if
columns start with a new accumulator.

Carrybuffer 1

8-bit word in the range 0x00 .. 0xFE

8-bit word in the range 0x00 .. 0xFF

Carrybuffer 2

carry operation 1

Carrybuffer 3

carry operation 2

Fig. 7. Carry Handling in Columns

Summary of carry handling costs: This way the total carry handling results in:

– 5 cycles for 5 elementary instruction blocks (equals 1 row)
– 2 cycles for each column
– 3 cycles for each column starting with new accumulator



Enabling Full-Size Public-Key Algorithms on 8-bit Sensor Nodes 11

Altogether 400+32+15

400
= 1.1175 additional cycles2 per elementary instruction block are required for

the carry handling, which is equivalent to an overhead of 28%. Note that this calculation includes
all carry handling for the entire multiplication, whereas in the estimation of our first approach
(75% overhead) additional carry handling at the end of each row and column was required. Since
the elementary instruction block is repeated 400 times the benefits in saving both time and energy
is enormous.

Two more aspects shall be mentioned here: First, the amount of needed registers to apply this
carry handling equals the number of partial product which have to be buffered per row. As a result
a smaller d has to be applied. Choosing the optimum size for d in reality can be a quite challenging
task though. Second, the additional effort for handling carry bits in the way presented here can be
divided in a static and a dynamic part. The effort of one clock cycle per elementary instruction
block is static, while the remainder is supposed to grow with smaller column width.

4 Results

The basic requirement for a fast and thus energy efficient implementation of ECC is a very fast
multiplication in the prime field. The fastest known implementation was implemented by SUN Mi-
crosystems. In [GPW+04] they provide a benchmark for the micro controller that we used as well,
hence a direct comparison is possible. A 160-bit multiplication from SUN Microsystems’ implemen-
tation requires 3106 cycles, which is at a clock rate of 7.37 MHz equivalent to 0.42 ms.

The implementation presented in this work needs 2881 cycles for a 160-bit multiplication, which
is equivalent to 0.39 ms at 7.37 MHz. In fact, this represents a time saving of 7.2%. To the best
of our knowledge this is the fastest implementation world wide of a modular multiplication of a
160-bit standardized elliptic curve for an 8-bit micro controller.

In Table 1 we present a detailed list of instructions used by our and SUN Microsystems’ imple-
mentation as published in [GPW+04]. A third column contains the theoretical minimum amount
of the appropriate instruction, as required by the hybrid multiplication with a column width of 5
on the ATMega128L micro controller. However, this number cannot be achieved, but is mentioned
to show the limit and the overhead. Each row represents an instruction or a set of instructions,
which are very similar. The first row represents the 8-bit addition with and without carry. In the
next row the number of 8-bit multiplications can be seen. In the following row all used data loads
are combined. Thereafter the used commands to write back to SRAM are listed. The underlying
row shows all 8-bit and 16-bit register moves. Finally all other instructions are combined. In this
row only the number of used cycles is given while the number of instructions is missing, because
different instructions may consume different number of cycles to be executed.

As one can see, the main differences between our implementation and SUN Microsystems’ lie in
the number of used additions and data loads. Note that data loads require two cycles contrary to
the addition, which only requires one cycle. Although SUN Microsystems’ implementation executes
less data load instructions, in total it requires more cycles than our implementation. The time
saving results from the improved carry handling reducing the number of needed additions close
to the minimum. In SUN Microsystems’ implementation the number of data loads is close to the

2 Recall that each column is comprised of 5 rows, each of them is comprised of 5 elementary instruction
blocks, i.e. each column consists of 25 elementary instruction blocks. For a 160-bit point multiplication 16
columns are required, i.e. 400 elementary instruction blocks. Five columns starting with a new accumulator
require additional cycles.



12 Leif Uhsadel, Axel Poschmann, and Christof Paar

minimum number of 160 data loads for a column width of 5. The additional data loads in our
implementation result from pointer handling. Pointers have to be restored from SRAM very often,
because the carry handling needs all spare registers.

This work SUN Microsystems Theoretical Minimum
Instruction #C/I Instructions Cycles Instructions Cycles Instructions Cycles

add/adc 1 986 986 1360 1360 800 800

mul 2 400 800 400 800 400 800

ld/lds 2 238 476 167 334 160 320

st/sts 2 40 80 40 80 40 80

mov/movw 1 355 355 335 335

other 184 197

Sum 2881 3106 2000
Table 1. Overview of instructions used

Comparison with TinyECC is cumbersome for two reasons: on the one hand neither time tables
for curve nor modular arithmetic for TinyECC are available. On the other hand we did not imple-
ment a full ECDSA protocol. Therefore we estimate the execution time of an ECDSA signature
based on our modular multiplication. [GPW+04] state that 77% of the execution time of one point
multiplication are required for modular multiplication. Assuming our multiplication to be used here
would result in 0.76s. Note that this curve arithmetic includes some well applied algorithmic opti-
mizations which are best fitted to hardware, because they are done in assembly. On the other hand
no special optimization for ECDSA were included, e.g. the y-coordinate is calculated but not used
at all for the ECDSA protocol. A signature requires one inversion, two modular multiplication, and
one modular addition. In addition one SHA-1 has to be executed to hash the message. Generally
SHA-1 and a modular multiplication are both roughly three orders of magnitude faster than a point
multiplication. The execution time of an inversion is in the range of several modular multiplica-
tions. The execution time of the modular addition is roughly four orders of magnitude faster than
the execution of a point multiplication. Therefore, we estimate that all required operations for an
ECDSA signature, including the SHA-1, can most probably be performed in less than one second.
A TinyECC ECDSA signature generation takes slightly less than two seconds, including the time
for the SHA-1 execution. Furthermore, once a precomputation time of a 3.5s is required.

5 Conclusion and Future Work

We presented the fastest implementation of a modular multiplication for a 160-bit standardized
elliptic curve for 8-bit micro controller in Section 3 and compared the results in Section 4. We also
highlighted the criteria for efficient implementations of ECC schemes for 8-bit micro controller and
pointed out the problems that arise when implementing

Since modular multiplications take up the major part of the computing time of point multipli-
cations over an elliptic curve, our results can be used to significantly increase the efficiency of point
multiplications over an elliptic curve. Many ECC schemes such as EC ElGamal or ECDSA are based
on modular multiplication and will therefore directly benefit from our results. Our results bring the



Enabling Full-Size Public-Key Algorithms on 8-bit Sensor Nodes 13

vision of asymmetric cryptography in the field of WSNs with all its benefits for key-distribution
and authentication a step closer to reality.

Next steps are the efficient implementation of point multiplication over the elliptic curve and
some ECC schemes such as EC ElGamal and ECDSA. Furthermore an integration into existing
ECC modules for TinyOS is thinkable.

Acknowledgments

The authors would like to thank Bodo Möller and André Weimerskirch for their insights and
comments on various aspects of this work. The work presented in this paper was supported in part
by the European Commission within the STREP UbiSec&Sens of the EU Framework Programme 6
for Research and Development (www.ist-ubisecsens.org). The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the UbiSec&Sens project or the European
Commission.

References

[Atm] Atmel. 8-bit Microcontroller with 128K Bytes In-System Programmable Flash.
http://www.atmel.com/.

[Bro01] Brown, M. and Hankerson, D. and López, J. and Menezes, A. Software Implementation of the
NIST Elliptic Curves Over Prime Fields. Lecture Notes in Computer Science, 2020:250ff, 2001.

[Cer00] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. Standards for
Efficient Cryptography Version 1.0, September 2000.

[CPS03] H. Chan, A. Perrig, and D. Song. Random Key Predistribution Schemes for Sensor Networks.
In Proceedings of the IEEE Security and Privacy Symposium 2003, 2003.

[DDHV] W. Du, J. Deng, Y. Han, and P. Varshney. A Pairwise Key Pre-distribution Scheme for Wireless
Sensor Networks. In CCS ’03: Proceedings of the 10th ACM Conference on Computer and
Communications Security.

[EG02] L. Eschenauer and V. Gligor. A Key Management Scheme for Distributed Sensor Networks. In
CCS ’02: Proceedings of the 9th ACM Conference on Computer and Communications Security,
New York, NY, USA, 2002. ACM Press.

[GPW+04] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz. Comparing Elliptic Curve Cryp-
tography and RSA on 8-bit CPUs. Proceedings of Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2004), 6th International Workshop, pages 119–132, 2004.

[HC02] J.L. Hill and D. Culler. Mica: a Wireless Platform for Deeply Embedded Networks. Micro,
IEEE, 22(6):12–24, 2002.

[HMV04] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer,
New York, 2004.

[HSW+00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System Architecture Directions
for Networked Sensors. SIGOPS Oper. Syst. Rev., 34(5):93–104, 2000.

[LN06] A. Liu and P. Ning. TinyECC: Elliptic Curve Cryptography for Sensor Networks. available for
download at http://discovery.csc.ncsu.edu/software/TinyECC, September 2006.

[MVPV96] A.J. Menezes, O. Van, C. Paul, and S.A. Vanstone. Handbook of Applied Cryptography. CRC
Pr I Llc, 1996.

[Res00] Certicom Research. SEC 1: Elliptic Curve Cryptography, Version 1.0, September 2000.
[Sol99] J. Solinas. Generalized Mersenne Numbers. Technical report CORR-39, Dept. of C&O, Univer-

sity of Waterloo, 1999. Available from http://www.cacr.math.uwaterloo.ca, 1999.



14 Leif Uhsadel, Axel Poschmann, and Christof Paar

[WKC+04] R. Watro, D. Kong, S. F. Cuti, C. Gardiner, C. Lynn, and P. Kruus. TinyPK: Securing Sensor
Networks with Public Key Technology. In SASN ’04: Proceedings of the 2nd ACM Workshop
on Security of Ad Hoc and Sensor Networks, pages 59–64, New York, NY, USA, 2004. ACM
Press.

[xbo] Crossbow Technology, Inc. http://www.xbow.com.


